Limits...
Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices.

Gingras B, Asselin PY, McAdams S - Front Psychol (2013)

Bottom Line: LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals.These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations.These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices.

View Article: PubMed Central - PubMed

Affiliation: Department of Cognitive Biology, University of Vienna Vienna, Austria.

ABSTRACT
Although a growing body of research has examined issues related to individuality in music performance, few studies have attempted to quantify markers of individuality that transcend pieces and musical styles. This study aims to identify such meta-markers by discriminating between influences linked to specific pieces or interpretive goals and performer-specific playing styles, using two complementary statistical approaches: linear mixed models (LMMs) to estimate fixed (piece and interpretation) and random (performer) effects, and similarity analyses to compare expressive profiles on a note-by-note basis across pieces and expressive parameters. Twelve professional harpsichordists recorded three pieces representative of the Baroque harpsichord repertoire, including three interpretations of one of these pieces, each emphasizing a different melodic line, on an instrument equipped with a MIDI console. Four expressive parameters were analyzed: articulation, note onset asynchrony, timing, and velocity. LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals. Some performers consistently deviated from the mean values for articulation and velocity across pieces and interpretations, suggesting that global measures of expressivity may in some cases constitute valid markers of artistic individuality. Similarity analyses detected significant associations among the magnitudes of the correlations between the expressive profiles of different performers. These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations. These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices.

No MeSH data available.


Mean values for articulation and asynchrony, for all three interpretations of the Partita. Each individual harpsichordist (identified as H1, H2, …, H12) is represented by a unique symbol. Each symbol represents a single recording. Three interpretations, each emphasizing a different melodic line (corresponding to the soprano, alto, or tenor part) were recorded. Each interpretation was recorded twice, with successive recordings indicated by the number “1” or “2.” Error bars represent the standard error of the mean. (A) Articulation, measured as relative overlap (negative values correspond to a detached articulation and positive values to a legato articulation). (B) Asynchrony, measured as the standard deviation of onset times for nominally synchronous notes (in milliseconds).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3842509&req=5

Figure 2: Mean values for articulation and asynchrony, for all three interpretations of the Partita. Each individual harpsichordist (identified as H1, H2, …, H12) is represented by a unique symbol. Each symbol represents a single recording. Three interpretations, each emphasizing a different melodic line (corresponding to the soprano, alto, or tenor part) were recorded. Each interpretation was recorded twice, with successive recordings indicated by the number “1” or “2.” Error bars represent the standard error of the mean. (A) Articulation, measured as relative overlap (negative values correspond to a detached articulation and positive values to a legato articulation). (B) Asynchrony, measured as the standard deviation of onset times for nominally synchronous notes (in milliseconds).

Mentions: The significant effect of repetition observed in the case of asynchrony corresponded to a tendency by performers to play the second recording of each interpretation with smaller asynchronies than the first (Figure 2B). Similarly, a marginal tendency to play the second recording more legato was observed (Figure 2A). To further investigate the effect of repetition in the comparisons across interpretations of the Partita, we considered the possibility that the repetition effect was a learning effect, and that performers were still getting accustomed to each interpretation. We thus analyzed the error rates using a GLMM that models the frequency of score errors as a function of the interpretation and the repetition, using a logit (binomial) distribution. This GLMM corresponded to a repeated-measures logistic regression with interpretation and repetition as fixed effects, and random intercept as well as random effect of interpretation, and was thus analogous to the LMMs presented in Table 3. Although error rates were slightly lower for the second repetition (0.69% on average, vs. 0.82% for the first repetition), neither the effect of repetition, F(1, 35) = 0.87, p = 0.36, nor the effect of interpretation, F(2, 22) = 0.49, p = 0.62, were close to reaching significance.


Individuality in harpsichord performance: disentangling performer- and piece-specific influences on interpretive choices.

Gingras B, Asselin PY, McAdams S - Front Psychol (2013)

Mean values for articulation and asynchrony, for all three interpretations of the Partita. Each individual harpsichordist (identified as H1, H2, …, H12) is represented by a unique symbol. Each symbol represents a single recording. Three interpretations, each emphasizing a different melodic line (corresponding to the soprano, alto, or tenor part) were recorded. Each interpretation was recorded twice, with successive recordings indicated by the number “1” or “2.” Error bars represent the standard error of the mean. (A) Articulation, measured as relative overlap (negative values correspond to a detached articulation and positive values to a legato articulation). (B) Asynchrony, measured as the standard deviation of onset times for nominally synchronous notes (in milliseconds).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3842509&req=5

Figure 2: Mean values for articulation and asynchrony, for all three interpretations of the Partita. Each individual harpsichordist (identified as H1, H2, …, H12) is represented by a unique symbol. Each symbol represents a single recording. Three interpretations, each emphasizing a different melodic line (corresponding to the soprano, alto, or tenor part) were recorded. Each interpretation was recorded twice, with successive recordings indicated by the number “1” or “2.” Error bars represent the standard error of the mean. (A) Articulation, measured as relative overlap (negative values correspond to a detached articulation and positive values to a legato articulation). (B) Asynchrony, measured as the standard deviation of onset times for nominally synchronous notes (in milliseconds).
Mentions: The significant effect of repetition observed in the case of asynchrony corresponded to a tendency by performers to play the second recording of each interpretation with smaller asynchronies than the first (Figure 2B). Similarly, a marginal tendency to play the second recording more legato was observed (Figure 2A). To further investigate the effect of repetition in the comparisons across interpretations of the Partita, we considered the possibility that the repetition effect was a learning effect, and that performers were still getting accustomed to each interpretation. We thus analyzed the error rates using a GLMM that models the frequency of score errors as a function of the interpretation and the repetition, using a logit (binomial) distribution. This GLMM corresponded to a repeated-measures logistic regression with interpretation and repetition as fixed effects, and random intercept as well as random effect of interpretation, and was thus analogous to the LMMs presented in Table 3. Although error rates were slightly lower for the second repetition (0.69% on average, vs. 0.82% for the first repetition), neither the effect of repetition, F(1, 35) = 0.87, p = 0.36, nor the effect of interpretation, F(2, 22) = 0.49, p = 0.62, were close to reaching significance.

Bottom Line: LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals.These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations.These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices.

View Article: PubMed Central - PubMed

Affiliation: Department of Cognitive Biology, University of Vienna Vienna, Austria.

ABSTRACT
Although a growing body of research has examined issues related to individuality in music performance, few studies have attempted to quantify markers of individuality that transcend pieces and musical styles. This study aims to identify such meta-markers by discriminating between influences linked to specific pieces or interpretive goals and performer-specific playing styles, using two complementary statistical approaches: linear mixed models (LMMs) to estimate fixed (piece and interpretation) and random (performer) effects, and similarity analyses to compare expressive profiles on a note-by-note basis across pieces and expressive parameters. Twelve professional harpsichordists recorded three pieces representative of the Baroque harpsichord repertoire, including three interpretations of one of these pieces, each emphasizing a different melodic line, on an instrument equipped with a MIDI console. Four expressive parameters were analyzed: articulation, note onset asynchrony, timing, and velocity. LMMs showed that piece-specific influences were much larger for articulation than for other parameters, for which performer-specific effects were predominant, and that piece-specific influences were generally larger than effects associated with interpretive goals. Some performers consistently deviated from the mean values for articulation and velocity across pieces and interpretations, suggesting that global measures of expressivity may in some cases constitute valid markers of artistic individuality. Similarity analyses detected significant associations among the magnitudes of the correlations between the expressive profiles of different performers. These associations were found both when comparing across parameters and within the same piece or interpretation, or on the same parameter and across pieces or interpretations. These findings suggest the existence of expressive meta-strategies that can manifest themselves across pieces, interpretive goals, or expressive devices.

No MeSH data available.