Limits...
Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue.

Luo W, Hu Q, Wang D, Deeb KK, Ma Y, Morrison CD, Liu S, Johnson CS, Trump DL - Oncotarget (2013)

Bottom Line: The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs.Interestingly, only a small proportion of perturbed gene was overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer.Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York.

ABSTRACT
Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissue obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed gene was overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer.

Show MeSH

Related in: MedlinePlus

Gene expression profiles in ECs from African American and Caucasian AmericanA) Venn diagrams showing the overlap of the differentially expressed probe sets derived from tumor vs. normal comparison from all paired samples with those from AA group only and CA group only. B) Heat map for probesets whose expression changes of tumor versus normal in AA group are significantly different from that in CA group. In heat map, red means up-regulated while green means down regulated. Green and orange bars stand for normal and tumor respectively in AA samples, while blue and red bars stand for normal and tumor respectively in CA samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3824530&req=5

Figure 3: Gene expression profiles in ECs from African American and Caucasian AmericanA) Venn diagrams showing the overlap of the differentially expressed probe sets derived from tumor vs. normal comparison from all paired samples with those from AA group only and CA group only. B) Heat map for probesets whose expression changes of tumor versus normal in AA group are significantly different from that in CA group. In heat map, red means up-regulated while green means down regulated. Green and orange bars stand for normal and tumor respectively in AA samples, while blue and red bars stand for normal and tumor respectively in CA samples.

Mentions: At first, we made TdEC-versus-NdEC comparisons using all 5 pairs. As shown in Figure 3A, we identified 872 probe-sets with at least 1.5-fold differential expression at the significance level of p<0.05. Compared with the differentially expressed probe-sets derived from TdEC-versus-NdEC comparisons stratified by race, 99 of these 872 probe-sets can be derived using CA group only, while 355 probe-sets can be derived using AA group only. There are 1628, 672 and 445 probe-sets unique to the comparison using AA group only, CA group only, and all 10 samples, respectively, indicating a distinct gene expression pattern in TdECs versus NdECs from the AA and CA prostate cancer patients in this study. We identified 2,092 and 880 differentially expressed probe sets for the TdECs versus NdECs in the AA and CA groups, respectively. Only 136 probe sets are shared (Figure 3A). Hierarchical clustering of probe-sets whose expression changes in TdECs versus NdECs in AA group are found to be different from that in CA group is shown in Figure 3B.


Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue.

Luo W, Hu Q, Wang D, Deeb KK, Ma Y, Morrison CD, Liu S, Johnson CS, Trump DL - Oncotarget (2013)

Gene expression profiles in ECs from African American and Caucasian AmericanA) Venn diagrams showing the overlap of the differentially expressed probe sets derived from tumor vs. normal comparison from all paired samples with those from AA group only and CA group only. B) Heat map for probesets whose expression changes of tumor versus normal in AA group are significantly different from that in CA group. In heat map, red means up-regulated while green means down regulated. Green and orange bars stand for normal and tumor respectively in AA samples, while blue and red bars stand for normal and tumor respectively in CA samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3824530&req=5

Figure 3: Gene expression profiles in ECs from African American and Caucasian AmericanA) Venn diagrams showing the overlap of the differentially expressed probe sets derived from tumor vs. normal comparison from all paired samples with those from AA group only and CA group only. B) Heat map for probesets whose expression changes of tumor versus normal in AA group are significantly different from that in CA group. In heat map, red means up-regulated while green means down regulated. Green and orange bars stand for normal and tumor respectively in AA samples, while blue and red bars stand for normal and tumor respectively in CA samples.
Mentions: At first, we made TdEC-versus-NdEC comparisons using all 5 pairs. As shown in Figure 3A, we identified 872 probe-sets with at least 1.5-fold differential expression at the significance level of p<0.05. Compared with the differentially expressed probe-sets derived from TdEC-versus-NdEC comparisons stratified by race, 99 of these 872 probe-sets can be derived using CA group only, while 355 probe-sets can be derived using AA group only. There are 1628, 672 and 445 probe-sets unique to the comparison using AA group only, CA group only, and all 10 samples, respectively, indicating a distinct gene expression pattern in TdECs versus NdECs from the AA and CA prostate cancer patients in this study. We identified 2,092 and 880 differentially expressed probe sets for the TdECs versus NdECs in the AA and CA groups, respectively. Only 136 probe sets are shared (Figure 3A). Hierarchical clustering of probe-sets whose expression changes in TdECs versus NdECs in AA group are found to be different from that in CA group is shown in Figure 3B.

Bottom Line: The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs.Interestingly, only a small proportion of perturbed gene was overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer.Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer.

View Article: PubMed Central - PubMed

Affiliation: Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York.

ABSTRACT
Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissue obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small proportion of perturbed gene was overlapped between American (AA) and Caucasian American (CA) patients with prostate cancer. Our study indicates that identifying gene expression and/or epigenetic differences between TdECs and NdECs may provide us with new anti-angiogenic targets. Future studies will be required to further characterize the isolated ECs and determine the biological features that can be exploited in the prognosis and therapy of prostate cancer.

Show MeSH
Related in: MedlinePlus