Limits...
Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

Bowen De León K, Gerlach R, Peyton BM, Fields MW - Front Microbiol (2013)

Bottom Line: The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring.The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined.The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Montana State University Bozeman, MT, USA ; Center for Biofilm Engineering, Montana State University Bozeman, MT, USA.

ABSTRACT
The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

No MeSH data available.


Related in: MedlinePlus

Relative abundance of archaeal phyla (A) and forward (B) and reverse (C) genera. Forward (B) and Reverse (C) genera with a relative abundance <2 and <1%, respectively, were grouped as Other. Korarchaeota were observed at low relative abundances (<0.4%) in the 44°C_2007 and 63°C_2007 reverse datasets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3824361&req=5

Figure 3: Relative abundance of archaeal phyla (A) and forward (B) and reverse (C) genera. Forward (B) and Reverse (C) genera with a relative abundance <2 and <1%, respectively, were grouped as Other. Korarchaeota were observed at low relative abundances (<0.4%) in the 44°C_2007 and 63°C_2007 reverse datasets.

Mentions: In general, the archaeal populations fluctuated more across time compared to the bacterial populations (Figure 3). Similar to the bacterial samples, many archaeal genera shared dominance (i.e., more even population distribution) in the 44°C spring. Methanomassiliicoccus and Methanocella were dominant in both the forward and reverse datasets in 2007 and Thermofilum and Methanolinea were dominant in both datasets in 2008. The remaining predominant genera varied by SSU rRNA gene region. Methanocella was dominant for both SSU rRNA gene datasets in 2009, but shared dominance with Caldiarchaeum in the forward sequence set.


Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park.

Bowen De León K, Gerlach R, Peyton BM, Fields MW - Front Microbiol (2013)

Relative abundance of archaeal phyla (A) and forward (B) and reverse (C) genera. Forward (B) and Reverse (C) genera with a relative abundance <2 and <1%, respectively, were grouped as Other. Korarchaeota were observed at low relative abundances (<0.4%) in the 44°C_2007 and 63°C_2007 reverse datasets.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3824361&req=5

Figure 3: Relative abundance of archaeal phyla (A) and forward (B) and reverse (C) genera. Forward (B) and Reverse (C) genera with a relative abundance <2 and <1%, respectively, were grouped as Other. Korarchaeota were observed at low relative abundances (<0.4%) in the 44°C_2007 and 63°C_2007 reverse datasets.
Mentions: In general, the archaeal populations fluctuated more across time compared to the bacterial populations (Figure 3). Similar to the bacterial samples, many archaeal genera shared dominance (i.e., more even population distribution) in the 44°C spring. Methanomassiliicoccus and Methanocella were dominant in both the forward and reverse datasets in 2007 and Thermofilum and Methanolinea were dominant in both datasets in 2008. The remaining predominant genera varied by SSU rRNA gene region. Methanocella was dominant for both SSU rRNA gene datasets in 2009, but shared dominance with Caldiarchaeum in the forward sequence set.

Bottom Line: The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring.The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined.The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Montana State University Bozeman, MT, USA ; Center for Biofilm Engineering, Montana State University Bozeman, MT, USA.

ABSTRACT
The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

No MeSH data available.


Related in: MedlinePlus