Limits...
Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

Park SH, Lee JM, Kim JS - ScientificWorldJournal (2013)

Bottom Line: The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments.The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator.The performance improvement is verified by computer simulation using AMESim software.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-732, Republic of Korea.

ABSTRACT
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

Show MeSH

Related in: MedlinePlus

Schematic of VDAPP in the case of maximum flow rate.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3824334&req=5

fig8: Schematic of VDAPP in the case of maximum flow rate.

Mentions: As shown in Figure 8, the swash plate is held in a certain swivel angle. In this area, the discharge pressure of the pump does not feed back into the control cylinder. This causes the swash plate to rotate in a maximum angular displacement. As a result, the pump can supply the maximum flow rate to a load system unless the discharge pressure of VDAPP is sufficiently increased to a certain level by a load. At the maximum flow rate section shown in Figure 9, the discharge flow rate cannot be feed into the control cylinder because the spool blocks the path of the sleeve.


Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

Park SH, Lee JM, Kim JS - ScientificWorldJournal (2013)

Schematic of VDAPP in the case of maximum flow rate.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3824334&req=5

fig8: Schematic of VDAPP in the case of maximum flow rate.
Mentions: As shown in Figure 8, the swash plate is held in a certain swivel angle. In this area, the discharge pressure of the pump does not feed back into the control cylinder. This causes the swash plate to rotate in a maximum angular displacement. As a result, the pump can supply the maximum flow rate to a load system unless the discharge pressure of VDAPP is sufficiently increased to a certain level by a load. At the maximum flow rate section shown in Figure 9, the discharge flow rate cannot be feed into the control cylinder because the spool blocks the path of the sleeve.

Bottom Line: The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments.The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator.The performance improvement is verified by computer simulation using AMESim software.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-732, Republic of Korea.

ABSTRACT
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

Show MeSH
Related in: MedlinePlus