Limits...
Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

Park SH, Lee JM, Kim JS - ScientificWorldJournal (2013)

Bottom Line: The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments.The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator.The performance improvement is verified by computer simulation using AMESim software.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-732, Republic of Korea.

ABSTRACT
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

Show MeSH

Related in: MedlinePlus

Sectional view of counterbalance assembly.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3824334&req=5

fig5: Sectional view of counterbalance assembly.

Mentions: A schematic diagram of a swash plate VDAPP with a constant power regulator is shown in Figure 1. Figure 2 represent hydraulic circuit of the constant power regulator system. The constant power regulator system consists of five parts, that is, a regulator assembly (A), a control cylinder assembly (B) which controls the angle of the swash plate, a counterbalance assembly (C), a swash plate (D), and a piston (E). As shown in Figure 3, the regulator assembly consists of a spool and sleeve. A flow area of the regulator system is determined by relative displacement between spool and sleeve. Figures 4 and 5 show the detailed structure of the control cylinder and counterbalance.


Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

Park SH, Lee JM, Kim JS - ScientificWorldJournal (2013)

Sectional view of counterbalance assembly.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3824334&req=5

fig5: Sectional view of counterbalance assembly.
Mentions: A schematic diagram of a swash plate VDAPP with a constant power regulator is shown in Figure 1. Figure 2 represent hydraulic circuit of the constant power regulator system. The constant power regulator system consists of five parts, that is, a regulator assembly (A), a control cylinder assembly (B) which controls the angle of the swash plate, a counterbalance assembly (C), a swash plate (D), and a piston (E). As shown in Figure 3, the regulator assembly consists of a spool and sleeve. A flow area of the regulator system is determined by relative displacement between spool and sleeve. Figures 4 and 5 show the detailed structure of the control cylinder and counterbalance.

Bottom Line: The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments.The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator.The performance improvement is verified by computer simulation using AMESim software.

View Article: PubMed Central - PubMed

Affiliation: School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-732, Republic of Korea.

ABSTRACT
An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

Show MeSH
Related in: MedlinePlus