Limits...
Clive Bell's "Significant Form" and the neurobiology of aesthetics.

Zeki S - Front Hum Neurosci (2013)

Bottom Line: Though first published almost one century ago, and though its premise has been disputed, Clive Bell's essay on aesthetics in his book Art still provides fertile ground for discussing problems in aesthetics, especially as they relate to neuroesthetics.In this essay, I begin with a brief account of Bell's ideas on aesthetics, and describe how they focus on problems of importance to neuroesthetics.I also examine where his premise falls short, and where it provides significant insights, from a neuroesthetic and general neurobiological point of view.

View Article: PubMed Central - PubMed

Affiliation: Wellcome Laboratory of Neurobiology, Department of Cell and Developmental Biology, University College London London, UK.

ABSTRACT
Though first published almost one century ago, and though its premise has been disputed, Clive Bell's essay on aesthetics in his book Art still provides fertile ground for discussing problems in aesthetics, especially as they relate to neuroesthetics. In this essay, I begin with a brief account of Bell's ideas on aesthetics, and describe how they focus on problems of importance to neuroesthetics. I also examine where his premise falls short, and where it provides significant insights, from a neuroesthetic and general neurobiological point of view.

No MeSH data available.


Related in: MedlinePlus

Schematic surface drawings of the brain to indicate (A) the relative positions of the early visual areas (V1–V5) referred to in the text and (B) the positions of areas critical for face (OFA and FFA), body (EBA) and object (LOC) representation. For further details, see text.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3824150&req=5

Figure 3: Schematic surface drawings of the brain to indicate (A) the relative positions of the early visual areas (V1–V5) referred to in the text and (B) the positions of areas critical for face (OFA and FFA), body (EBA) and object (LOC) representation. For further details, see text.

Mentions: In terms of modern neurobiology, then, another weakness of Bell’s theory is that, even when writing of the visual domain alone, his significant form is constituted by, and restricted to, lines, forms, and colors and their arrangement in relation to one another. For although there is no disputing their importance, these attributes are not only processed by separate neural systems in the brain (Zeki, 1978a, 1978b; DeYoe and Van Essen, 1985; Shipp and Zeki, 1985; Livingstone and Hubel, 1988; Zeki et al., 1991) but also are not the only attributes which can arouse an “aesthetic emotion.” A much more complex picture of the visual brain, and how it functions, has emerged over the past 50 years (see Figure 3). The primary visual cortex, or visual area V1, is the principal but not sole cortical recipient of visual signals from the retina. Surrounding it are several visual areas which receive specialized visual signals from it and from other visual centers, both cortical and sub-cortical. Apart from one area (V2) which, like V1, appears to have all the primary visual attributes represented in it (Zeki, 1978a; DeYoe and Van Essen, 1985; Shipp and Zeki, 1985; Livingstone and Hubel, 1988) the other areas surrounding V1–V2 are specialized to process different attributes of the visual world. Among these specializations are ones for visual motion (based on area V5 and its satellites – the V5 complex; Zeki, 1974; Watson et al., 1993; Orban et al., 1995), the V4 complex, critical for the perception of colors (Zeki, 1973; McKeefry and Zeki, 1997; Bartels and Zeki, 2000; Wade et al., 2002; Goddard et al., 2011) and form-in-association with color (Zeki, 1993); and the V3 complex (comprising V3, V3A, and V3B; Smith et al., 1998; Press et al., 2001), specialized for the perception of forms, especially dynamic ones (Zeki et al., 1991, 2003; Zeki, 1993). Other areas are specialized for the perception of faces (Sergent et al., 1992; Kanwisher et al., 1997) and facial expressions (Yang et al., 2002; Vuilleumier and Pourtois, 2007; Derntl et al., 2009) as well as human bodies (Downing et al., 2001), although there is some disagreement about whether faces are processed by separate areas or by separate groupings within a larger area that also processes objects (Haxby et al., 2001). Evidence suggests that there are other cerebral visual areas which are specialized for other attributes. One of these is the LOC (Malach et al., 1995), located more anteriorly in the visual brain, and critically involved in object recognition, although how its properties are elaborated from the orientation selective cells of V1 and V2, a common if unproven supposition (see above), remains unknown. The total number of visual areas in the brain has not yet been determined, and more areas continue to be discovered; previously established areas are sometimes subdivided into further areas. But the multiplicity of visual areas in the brain is now established beyond doubt (Figure 3).


Clive Bell's "Significant Form" and the neurobiology of aesthetics.

Zeki S - Front Hum Neurosci (2013)

Schematic surface drawings of the brain to indicate (A) the relative positions of the early visual areas (V1–V5) referred to in the text and (B) the positions of areas critical for face (OFA and FFA), body (EBA) and object (LOC) representation. For further details, see text.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3824150&req=5

Figure 3: Schematic surface drawings of the brain to indicate (A) the relative positions of the early visual areas (V1–V5) referred to in the text and (B) the positions of areas critical for face (OFA and FFA), body (EBA) and object (LOC) representation. For further details, see text.
Mentions: In terms of modern neurobiology, then, another weakness of Bell’s theory is that, even when writing of the visual domain alone, his significant form is constituted by, and restricted to, lines, forms, and colors and their arrangement in relation to one another. For although there is no disputing their importance, these attributes are not only processed by separate neural systems in the brain (Zeki, 1978a, 1978b; DeYoe and Van Essen, 1985; Shipp and Zeki, 1985; Livingstone and Hubel, 1988; Zeki et al., 1991) but also are not the only attributes which can arouse an “aesthetic emotion.” A much more complex picture of the visual brain, and how it functions, has emerged over the past 50 years (see Figure 3). The primary visual cortex, or visual area V1, is the principal but not sole cortical recipient of visual signals from the retina. Surrounding it are several visual areas which receive specialized visual signals from it and from other visual centers, both cortical and sub-cortical. Apart from one area (V2) which, like V1, appears to have all the primary visual attributes represented in it (Zeki, 1978a; DeYoe and Van Essen, 1985; Shipp and Zeki, 1985; Livingstone and Hubel, 1988) the other areas surrounding V1–V2 are specialized to process different attributes of the visual world. Among these specializations are ones for visual motion (based on area V5 and its satellites – the V5 complex; Zeki, 1974; Watson et al., 1993; Orban et al., 1995), the V4 complex, critical for the perception of colors (Zeki, 1973; McKeefry and Zeki, 1997; Bartels and Zeki, 2000; Wade et al., 2002; Goddard et al., 2011) and form-in-association with color (Zeki, 1993); and the V3 complex (comprising V3, V3A, and V3B; Smith et al., 1998; Press et al., 2001), specialized for the perception of forms, especially dynamic ones (Zeki et al., 1991, 2003; Zeki, 1993). Other areas are specialized for the perception of faces (Sergent et al., 1992; Kanwisher et al., 1997) and facial expressions (Yang et al., 2002; Vuilleumier and Pourtois, 2007; Derntl et al., 2009) as well as human bodies (Downing et al., 2001), although there is some disagreement about whether faces are processed by separate areas or by separate groupings within a larger area that also processes objects (Haxby et al., 2001). Evidence suggests that there are other cerebral visual areas which are specialized for other attributes. One of these is the LOC (Malach et al., 1995), located more anteriorly in the visual brain, and critically involved in object recognition, although how its properties are elaborated from the orientation selective cells of V1 and V2, a common if unproven supposition (see above), remains unknown. The total number of visual areas in the brain has not yet been determined, and more areas continue to be discovered; previously established areas are sometimes subdivided into further areas. But the multiplicity of visual areas in the brain is now established beyond doubt (Figure 3).

Bottom Line: Though first published almost one century ago, and though its premise has been disputed, Clive Bell's essay on aesthetics in his book Art still provides fertile ground for discussing problems in aesthetics, especially as they relate to neuroesthetics.In this essay, I begin with a brief account of Bell's ideas on aesthetics, and describe how they focus on problems of importance to neuroesthetics.I also examine where his premise falls short, and where it provides significant insights, from a neuroesthetic and general neurobiological point of view.

View Article: PubMed Central - PubMed

Affiliation: Wellcome Laboratory of Neurobiology, Department of Cell and Developmental Biology, University College London London, UK.

ABSTRACT
Though first published almost one century ago, and though its premise has been disputed, Clive Bell's essay on aesthetics in his book Art still provides fertile ground for discussing problems in aesthetics, especially as they relate to neuroesthetics. In this essay, I begin with a brief account of Bell's ideas on aesthetics, and describe how they focus on problems of importance to neuroesthetics. I also examine where his premise falls short, and where it provides significant insights, from a neuroesthetic and general neurobiological point of view.

No MeSH data available.


Related in: MedlinePlus