Limits...
Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds.

Finn AS, Hudson Kam CL, Ettlinger M, Vytlacil J, D'Esposito M - Front Syst Neurosci (2013)

Bottom Line: Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG).Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan.Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California Berkeley, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA.

ABSTRACT
Does tuning to one's native language explain the "sensitive period" for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

No MeSH data available.


Beta-series analysis. The left IFG is coactive with the STG for NEP but not EP learners (A). The STG and IFG are more interactive as compared to English for NEP as compared to EP learners (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3824091&req=5

Figure 6: Beta-series analysis. The left IFG is coactive with the STG for NEP but not EP learners (A). The STG and IFG are more interactive as compared to English for NEP as compared to EP learners (B).

Mentions: These data establish an important role of the left IFG in learning the MAL and performance, while making grammaticality judgments in the new language. Whole brain analyses also establish the importance of the STG while processing these newly learned languages, especially for NEP learners (left STG recruitment is greater for NEP than EP learners; Figure 3D). If this region is not important for making grammaticality judgments or overall learning, then why are NEP learners recruiting this region more so than EP learners? To address this question, we performed functional connectivity analyses by choosing seed regions in the left IFG and the left STG (the 10 most active contiguous, voxels within the anatomical region while processing English (English > implicit baseline) and searched for correlated fluctuations in activity (with the time series in the seed region: beta series analysis) the brain while individuals were processing the MAL they learned (vs. implicit baseline) (Rissman et al., 2004). First, expected beta series correlations were observed in EP and NEP learners with classic language regions in both hemispheres (Table 8). Notably, the left STG seed was coactive with the left IFG (t = 4.34, p < 0.001; Figure 6A; Table 8) and the posterior left temporal-parietal-occipital region [also important for higher-order language processing (Poeppel and Hickok, 2004), t = 4.44 p < 0.001] in NEP but not EP learners (Figure 6A; Table 8). The STG appears to be more involved in the neural network involved in processing the MAL in the NEP learners, a finding that could shed light on why NEP learners recruit this region more.


Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds.

Finn AS, Hudson Kam CL, Ettlinger M, Vytlacil J, D'Esposito M - Front Syst Neurosci (2013)

Beta-series analysis. The left IFG is coactive with the STG for NEP but not EP learners (A). The STG and IFG are more interactive as compared to English for NEP as compared to EP learners (B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3824091&req=5

Figure 6: Beta-series analysis. The left IFG is coactive with the STG for NEP but not EP learners (A). The STG and IFG are more interactive as compared to English for NEP as compared to EP learners (B).
Mentions: These data establish an important role of the left IFG in learning the MAL and performance, while making grammaticality judgments in the new language. Whole brain analyses also establish the importance of the STG while processing these newly learned languages, especially for NEP learners (left STG recruitment is greater for NEP than EP learners; Figure 3D). If this region is not important for making grammaticality judgments or overall learning, then why are NEP learners recruiting this region more so than EP learners? To address this question, we performed functional connectivity analyses by choosing seed regions in the left IFG and the left STG (the 10 most active contiguous, voxels within the anatomical region while processing English (English > implicit baseline) and searched for correlated fluctuations in activity (with the time series in the seed region: beta series analysis) the brain while individuals were processing the MAL they learned (vs. implicit baseline) (Rissman et al., 2004). First, expected beta series correlations were observed in EP and NEP learners with classic language regions in both hemispheres (Table 8). Notably, the left STG seed was coactive with the left IFG (t = 4.34, p < 0.001; Figure 6A; Table 8) and the posterior left temporal-parietal-occipital region [also important for higher-order language processing (Poeppel and Hickok, 2004), t = 4.44 p < 0.001] in NEP but not EP learners (Figure 6A; Table 8). The STG appears to be more involved in the neural network involved in processing the MAL in the NEP learners, a finding that could shed light on why NEP learners recruit this region more.

Bottom Line: Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG).Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan.Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California Berkeley, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA.

ABSTRACT
Does tuning to one's native language explain the "sensitive period" for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

No MeSH data available.