Limits...
Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds.

Finn AS, Hudson Kam CL, Ettlinger M, Vytlacil J, D'Esposito M - Front Syst Neurosci (2013)

Bottom Line: Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG).Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan.Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California Berkeley, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA.

ABSTRACT
Does tuning to one's native language explain the "sensitive period" for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

No MeSH data available.


Conjunction Analysis. Learners of both languages recruit many overlapping voxels with English (A,B). Overlaying both conjunctions shows differences in the EP and English conjunction (red) and NEP and English conjunction (green) as well as shared regions (yellow) (C). Group t-tests reveal that the number of jointly recruited voxels (new language and English) differ across groups in the left Inferior Frontal Gyrus (IFG), the left anterior Angular Gyrus (AGa) for multiple different t-statistic thresholds (t = 3 through 5), and the left posterior Angular Gyrus (AGp), but not in the left Superior Temporal Gyrus (STG) (D). In all cases, error bars reflect standard error of the mean. *indicates a significant difference at p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3824091&req=5

Figure 4: Conjunction Analysis. Learners of both languages recruit many overlapping voxels with English (A,B). Overlaying both conjunctions shows differences in the EP and English conjunction (red) and NEP and English conjunction (green) as well as shared regions (yellow) (C). Group t-tests reveal that the number of jointly recruited voxels (new language and English) differ across groups in the left Inferior Frontal Gyrus (IFG), the left anterior Angular Gyrus (AGa) for multiple different t-statistic thresholds (t = 3 through 5), and the left posterior Angular Gyrus (AGp), but not in the left Superior Temporal Gyrus (STG) (D). In all cases, error bars reflect standard error of the mean. *indicates a significant difference at p < 0.05.

Mentions: In the next set of analyses, we use overlap and connectivity methods to explore which recruitment profile (EP vs. NEP) is more similar to English, participants' native language. First, if experience-driven neural tuning contributes to sensitive period phenomena, we should observe less overlapping recruitment for the language with distinct phonology (NEP) and English than EP and English. Both EP and NEP recruitment overlaps with English in the IFG, AG, and STG (along with other regions including the Basal Ganglia; Table 5; Figures 4A,B). To investigate differences across the groups of learners, we counted the number of voxels that were jointly active for English and the new language (EP or NEP; Figure 4C) in the left IFG, left STG, and left AG (posterior and anterior) at multiple different thresholds (t = 3, 3.5, 4, 4.5, 5, and 5.5; Figure 4D). We then compared the means of these values across groups using independent samples t-tests (Table 6), and found that EP learners have more overlapping recruitment (of the language they learned and English) than NEP learners in the left IFG and AG (both anterior and posterior regions), but not in the left STG (Table 6).


Learning language with the wrong neural scaffolding: the cost of neural commitment to sounds.

Finn AS, Hudson Kam CL, Ettlinger M, Vytlacil J, D'Esposito M - Front Syst Neurosci (2013)

Conjunction Analysis. Learners of both languages recruit many overlapping voxels with English (A,B). Overlaying both conjunctions shows differences in the EP and English conjunction (red) and NEP and English conjunction (green) as well as shared regions (yellow) (C). Group t-tests reveal that the number of jointly recruited voxels (new language and English) differ across groups in the left Inferior Frontal Gyrus (IFG), the left anterior Angular Gyrus (AGa) for multiple different t-statistic thresholds (t = 3 through 5), and the left posterior Angular Gyrus (AGp), but not in the left Superior Temporal Gyrus (STG) (D). In all cases, error bars reflect standard error of the mean. *indicates a significant difference at p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3824091&req=5

Figure 4: Conjunction Analysis. Learners of both languages recruit many overlapping voxels with English (A,B). Overlaying both conjunctions shows differences in the EP and English conjunction (red) and NEP and English conjunction (green) as well as shared regions (yellow) (C). Group t-tests reveal that the number of jointly recruited voxels (new language and English) differ across groups in the left Inferior Frontal Gyrus (IFG), the left anterior Angular Gyrus (AGa) for multiple different t-statistic thresholds (t = 3 through 5), and the left posterior Angular Gyrus (AGp), but not in the left Superior Temporal Gyrus (STG) (D). In all cases, error bars reflect standard error of the mean. *indicates a significant difference at p < 0.05.
Mentions: In the next set of analyses, we use overlap and connectivity methods to explore which recruitment profile (EP vs. NEP) is more similar to English, participants' native language. First, if experience-driven neural tuning contributes to sensitive period phenomena, we should observe less overlapping recruitment for the language with distinct phonology (NEP) and English than EP and English. Both EP and NEP recruitment overlaps with English in the IFG, AG, and STG (along with other regions including the Basal Ganglia; Table 5; Figures 4A,B). To investigate differences across the groups of learners, we counted the number of voxels that were jointly active for English and the new language (EP or NEP; Figure 4C) in the left IFG, left STG, and left AG (posterior and anterior) at multiple different thresholds (t = 3, 3.5, 4, 4.5, 5, and 5.5; Figure 4D). We then compared the means of these values across groups using independent samples t-tests (Table 6), and found that EP learners have more overlapping recruitment (of the language they learned and English) than NEP learners in the left IFG and AG (both anterior and posterior regions), but not in the left STG (Table 6).

Bottom Line: Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG).Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan.Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, University of California Berkeley, CA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA.

ABSTRACT
Does tuning to one's native language explain the "sensitive period" for language learning? We explore the idea that tuning to (or becoming more selective for) the properties of one's native-language could result in being less open (or plastic) for tuning to the properties of a new language. To explore how this might lead to the sensitive period for grammar learning, we ask if tuning to an earlier-learned aspect of language (sound structure) has an impact on the neural representation of a later-learned aspect (grammar). English-speaking adults learned one of two miniature artificial languages (MALs) over 4 days in the lab. Compared to English, both languages had novel grammar, but only one was comprised of novel sounds. After learning a language, participants were scanned while judging the grammaticality of sentences. Judgments were performed for the newly learned language and English. Learners of the similar-sounds language recruited regions that overlapped more with English. Learners of the distinct-sounds language, however, recruited the Superior Temporal Gyrus (STG) to a greater extent, which was coactive with the Inferior Frontal Gyrus (IFG). Across learners, recruitment of IFG (but not STG) predicted both learning success in tests conducted prior to the scan and grammatical judgment ability during the scan. Data suggest that adults' difficulty learning language, especially grammar, could be due, at least in part, to the neural commitments they have made to the lower level linguistic components of their native language.

No MeSH data available.