Limits...
Cell biology in neuroscience: Death of developing neurons: new insights and implications for connectivity.

Dekkers MP, Nikoletopoulou V, Barde YA - J. Cell Biol. (2013)

Bottom Line: Recent discoveries now help to understand why only some developing neurons selectively depend on NGF.They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS.Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

View Article: PubMed Central - HTML - PubMed

Affiliation: Biozentrum, University of Basel, 4056 Basel, Switzerland.

ABSTRACT
The concept that target tissues determine the survival of neurons has inspired much of the thinking on neuronal development in vertebrates, not least because it is supported by decades of research on nerve growth factor (NGF) in the peripheral nervous system (PNS). Recent discoveries now help to understand why only some developing neurons selectively depend on NGF. They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS. Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

Show MeSH

Related in: MedlinePlus

TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC3824005&req=5

fig2: TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).

Mentions: Quantitatively, programmed cell death of neurons in the PNS and CNS is most dramatic when neurons start contacting the cells they innervate. Because experimental manipulations such as target excision typically lead to the death of essentially all innervating neurons (Oppenheim, 1991), the concept emerged that the fate of developing neurons is regulated by their targets. This notion is often referred to as the “neurotrophic theory” (Hamburger et al., 1981; Purves and Lichtman, 1984; Oppenheim, 1991), but it is important to realize that it evolved in the absence of direct mechanistic or molecular support (Purves, 1988). Originally described as a diffusible agent promoting nerve growth, the eponymous NGF later provided a strong and very appealing molecular foundation for this theory (Korsching and Thoenen, 1983; Edwards et al., 1989; Hamburger, 1992). The tyrosine kinase receptor tropomyosin receptor kinase A (TrkA), which was initially identified as an oncogene (Martin-Zanca et al., 1986), was fortuitously discovered to be the critical receptor necessary for the prevention of neuronal cell death by NGF (Klein et al., 1991). Both the remarkable expression pattern of TrkA in NGF-dependent neurons and the onset of its expression during development (Martin-Zanca et al., 1990) provided further additional support for the neurotrophic theory. However, for a surprisingly long time, the question was not asked as to why only specific populations of neurons strictly depend on NGF for survival, while others do not. Indeed, it was only recently shown that TrkA causes cell death of neurons by virtue of its mere expression, and that this death-inducing activity is prevented by addition of NGF (Nikoletopoulou et al., 2010). These findings thus indicate that TrkA acts as a “dependence receptor,” a concept introduced after observations that various cell types die when receptors are expressed in the absence of their cognate ligands (Bredesen et al., 2005; Tauszig-Delamasure et al., 2007). Accordingly, embryonic mouse sympathetic or sensory neurons survive in the absence of NGF when TrkA is deleted (Nikoletopoulou et al., 2010). The closely related neurotrophin receptor TrkC also acts as a dependence receptor (Tauszig-Delamasure et al., 2007; Nikoletopoulou et al., 2010). Here, it is interesting to note a series of older, convergent results indicating that deletion of neurotrophin-3 (NT3), the TrkC ligand, leads to a significantly larger loss of sensory and sympathetic neurons in the PNS than the deletion of TrkC (Tessarollo et al., 1997). This phenotypic discrepancy fits well with the idea that inactivation of the ligand of a dependence receptor is expected to yield a more profound phenotype than inactivation of the receptor itself (Tauszig-Delamasure et al., 2007). How TrkA and TrkC induce apoptosis remains to be fully elucidated. It seems that proteolysis is involved, either of TrkC itself (Tauszig-Delamasure et al., 2007), as was suggested for other dependence receptors (Bredesen et al., 2005), or by the proteolysis of the neurotrophin receptor p75NTR, which associates with both TrkA and TrkC (Fig. 2; Nikoletopoulou et al., 2010). Surprisingly, although TrkA and TrkC cause cell death, the structurally related TrkB receptor does not (Nikoletopoulou et al., 2010), a difference that appears to be accounted for by their differential localization in the cell membrane. TrkA and TrkC colocalize with p75NTR in lipid rafts, whereas TrkB, which also associates with p75NTR (Bibel et al., 1999), is excluded from lipid rafts (Fig. 2; unpublished data). Interestingly, the transmembrane domains of TrkA and TrkC are closely related, and differ clearly from that of TrkB. It turns out that a chimeric protein of TrkB with the transmembrane domain of TrkA causes cell death, which can be prevented by the addition of the TrkB ligand brain-derived neurotrophic factor (BDNF; unpublished data). The suggestion that the lipid raft localization of TrkA and TrkC is important for their death-inducing function is in line with a number of reports indicating that certain apoptotic proteins preferentially localize in lipid rafts in the plasma membrane. After activation of the extrinsic apoptosis pathway, translocation of the activated receptors to lipid rafts in the membrane is required for assembling the death-inducing signaling complex (DISC; Davis et al., 2007; Song et al., 2007). Indeed, regulators of the extrinsic pathway (e.g., cFLIP; Fig. 1) prevent this translocation, explaining how they attenuate cell death induction (Song et al., 2007). Similarly, the localization of the dependence receptor DCC (deleted in colorectal cancer) in lipid rafts is a prerequisite for its pro-apoptotic activity in absence of its ligand, Netrin-1 (Furne et al., 2006).


Cell biology in neuroscience: Death of developing neurons: new insights and implications for connectivity.

Dekkers MP, Nikoletopoulou V, Barde YA - J. Cell Biol. (2013)

TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC3824005&req=5

fig2: TrkA and TrkC as dependence receptors: mode of action and contrast with TrkB. All Trk receptors associate with the pan-neurotrophin receptor p75NTR (Bibel et al., 1999). A critical step in the induction of apoptosis by TrkA is the release of the intracellular death domain of p75NTR by the protease γ-secretase (Nikoletopoulou et al., 2010), which is localized in lipid rafts (Urano et al., 2005). Our membrane fractionation studies indicate that while TrkA and TrkC associate with p75NTR in lipid rafts, TrkB associated with p75NTR is excluded from this membrane domain (unpublished data). The 24–amino acid transmembrane domain of the Trk receptors may be responsible for this differential localization (see text).
Mentions: Quantitatively, programmed cell death of neurons in the PNS and CNS is most dramatic when neurons start contacting the cells they innervate. Because experimental manipulations such as target excision typically lead to the death of essentially all innervating neurons (Oppenheim, 1991), the concept emerged that the fate of developing neurons is regulated by their targets. This notion is often referred to as the “neurotrophic theory” (Hamburger et al., 1981; Purves and Lichtman, 1984; Oppenheim, 1991), but it is important to realize that it evolved in the absence of direct mechanistic or molecular support (Purves, 1988). Originally described as a diffusible agent promoting nerve growth, the eponymous NGF later provided a strong and very appealing molecular foundation for this theory (Korsching and Thoenen, 1983; Edwards et al., 1989; Hamburger, 1992). The tyrosine kinase receptor tropomyosin receptor kinase A (TrkA), which was initially identified as an oncogene (Martin-Zanca et al., 1986), was fortuitously discovered to be the critical receptor necessary for the prevention of neuronal cell death by NGF (Klein et al., 1991). Both the remarkable expression pattern of TrkA in NGF-dependent neurons and the onset of its expression during development (Martin-Zanca et al., 1990) provided further additional support for the neurotrophic theory. However, for a surprisingly long time, the question was not asked as to why only specific populations of neurons strictly depend on NGF for survival, while others do not. Indeed, it was only recently shown that TrkA causes cell death of neurons by virtue of its mere expression, and that this death-inducing activity is prevented by addition of NGF (Nikoletopoulou et al., 2010). These findings thus indicate that TrkA acts as a “dependence receptor,” a concept introduced after observations that various cell types die when receptors are expressed in the absence of their cognate ligands (Bredesen et al., 2005; Tauszig-Delamasure et al., 2007). Accordingly, embryonic mouse sympathetic or sensory neurons survive in the absence of NGF when TrkA is deleted (Nikoletopoulou et al., 2010). The closely related neurotrophin receptor TrkC also acts as a dependence receptor (Tauszig-Delamasure et al., 2007; Nikoletopoulou et al., 2010). Here, it is interesting to note a series of older, convergent results indicating that deletion of neurotrophin-3 (NT3), the TrkC ligand, leads to a significantly larger loss of sensory and sympathetic neurons in the PNS than the deletion of TrkC (Tessarollo et al., 1997). This phenotypic discrepancy fits well with the idea that inactivation of the ligand of a dependence receptor is expected to yield a more profound phenotype than inactivation of the receptor itself (Tauszig-Delamasure et al., 2007). How TrkA and TrkC induce apoptosis remains to be fully elucidated. It seems that proteolysis is involved, either of TrkC itself (Tauszig-Delamasure et al., 2007), as was suggested for other dependence receptors (Bredesen et al., 2005), or by the proteolysis of the neurotrophin receptor p75NTR, which associates with both TrkA and TrkC (Fig. 2; Nikoletopoulou et al., 2010). Surprisingly, although TrkA and TrkC cause cell death, the structurally related TrkB receptor does not (Nikoletopoulou et al., 2010), a difference that appears to be accounted for by their differential localization in the cell membrane. TrkA and TrkC colocalize with p75NTR in lipid rafts, whereas TrkB, which also associates with p75NTR (Bibel et al., 1999), is excluded from lipid rafts (Fig. 2; unpublished data). Interestingly, the transmembrane domains of TrkA and TrkC are closely related, and differ clearly from that of TrkB. It turns out that a chimeric protein of TrkB with the transmembrane domain of TrkA causes cell death, which can be prevented by the addition of the TrkB ligand brain-derived neurotrophic factor (BDNF; unpublished data). The suggestion that the lipid raft localization of TrkA and TrkC is important for their death-inducing function is in line with a number of reports indicating that certain apoptotic proteins preferentially localize in lipid rafts in the plasma membrane. After activation of the extrinsic apoptosis pathway, translocation of the activated receptors to lipid rafts in the membrane is required for assembling the death-inducing signaling complex (DISC; Davis et al., 2007; Song et al., 2007). Indeed, regulators of the extrinsic pathway (e.g., cFLIP; Fig. 1) prevent this translocation, explaining how they attenuate cell death induction (Song et al., 2007). Similarly, the localization of the dependence receptor DCC (deleted in colorectal cancer) in lipid rafts is a prerequisite for its pro-apoptotic activity in absence of its ligand, Netrin-1 (Furne et al., 2006).

Bottom Line: Recent discoveries now help to understand why only some developing neurons selectively depend on NGF.They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS.Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

View Article: PubMed Central - HTML - PubMed

Affiliation: Biozentrum, University of Basel, 4056 Basel, Switzerland.

ABSTRACT
The concept that target tissues determine the survival of neurons has inspired much of the thinking on neuronal development in vertebrates, not least because it is supported by decades of research on nerve growth factor (NGF) in the peripheral nervous system (PNS). Recent discoveries now help to understand why only some developing neurons selectively depend on NGF. They also indicate that the survival of most neurons in the central nervous system (CNS) is not simply regulated by single growth factors like in the PNS. Additionally, components of the cell death machinery have begun to be recognized as regulators of selective axonal degeneration and synaptic function, thus playing a critical role in wiring up the nervous system.

Show MeSH
Related in: MedlinePlus