Limits...
Development of a serial order in speech constrained by articulatory coordination.

Oohashi H, Watanabe H, Taga G - PLoS ONE (2013)

Bottom Line: Furthermore, we reveal that serial order of different places of articulations within the same organ appears earlier and then gradually develops, whereas serial order of different articulatory organs appears later and then rapidly develops.In the same way, we also analyzed the sequences produced by English children and obtained similar developmental trends.These results suggest that the development of intra- and inter-articulator coordination constrains the acquisition of serial orders in speech with the complexity that characterizes adult language.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Education, The University of Tokyo, Tokyo, Japan ; Research Fellow of the Japan Society for the Promotion of Science, Koujimachi Business Center, Tokyo, Japan.

ABSTRACT
Universal linguistic constraints seem to govern the organization of sound sequences in words. However, our understanding of the origin and development of these constraints is incomplete. One possibility is that the development of neuromuscular control of articulators acts as a constraint for the emergence of sequences in words. Repetitions of the same consonant observed in early infancy and an increase in variation of consonantal sequences over months of age have been interpreted as a consequence of the development of neuromuscular control. Yet, it is not clear how sequential coordination of articulators such as lips, tongue apex and tongue dorsum constrains sequences of labial, coronal and dorsal consonants in words over the course of development. We examined longitudinal development of consonant-vowel-consonant(-vowel) sequences produced by Japanese children between 7 and 60 months of age. The sequences were classified according to places of articulation for corresponding consonants. The analyses of individual and group data show that infants prefer repetitive and fronting articulations, as shown in previous studies. Furthermore, we reveal that serial order of different places of articulations within the same organ appears earlier and then gradually develops, whereas serial order of different articulatory organs appears later and then rapidly develops. In the same way, we also analyzed the sequences produced by English children and obtained similar developmental trends. These results suggest that the development of intra- and inter-articulator coordination constrains the acquisition of serial orders in speech with the complexity that characterizes adult language.

Show MeSH

Related in: MedlinePlus

The classification of serial order in articulations in the previous and present studies.(A) The place of articulations for consonants and vowels, and articulatory organs involved in each consonant. Depending on the horizontal position of the tongue, vowels are categorized into three types including front, center and back. This figure illustrates three places of articulations, including labial, coronal and dorsal. Labial consonants are mainly articulated by the lips and jaw. Coronal consonants are mainly articulated by the tongue apex and jaw. Dorsal consonants are mainly articulated by the tongue dorsum and jaw. (B) Three consonant-vowel patterns preferred by infants in early development. Focusing on three consonantal and vowel categories, theoretically speaking, it is possible to produce nine consonant-vowel sequences. However, infants prefer three out of those nine possible sequences: labial-center, coronal-front, and dorsal-back [11], [12]. (C) Serial order in articulation of consonants in consonant-vowel-consonant(-vowel) sequences. In the present study, focusing on the relationship among articulators producing adjacent consonants, we divided sequences into four categories: (i) Sequences consists of consonants produced at the same place of articulation. (ii) Sequences produced by movements from more anterior place to posterior one. (iii) Sequences consist of coronal and dorsal consonants, which are articulated by the same organ but different places (intra-organ articulations). (iv) Sequences consist of labial and coronal/dorsal consonants, which are articulated by different organs: lips and tongue (inter-organ articulations).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3818465&req=5

pone-0078600-g001: The classification of serial order in articulations in the previous and present studies.(A) The place of articulations for consonants and vowels, and articulatory organs involved in each consonant. Depending on the horizontal position of the tongue, vowels are categorized into three types including front, center and back. This figure illustrates three places of articulations, including labial, coronal and dorsal. Labial consonants are mainly articulated by the lips and jaw. Coronal consonants are mainly articulated by the tongue apex and jaw. Dorsal consonants are mainly articulated by the tongue dorsum and jaw. (B) Three consonant-vowel patterns preferred by infants in early development. Focusing on three consonantal and vowel categories, theoretically speaking, it is possible to produce nine consonant-vowel sequences. However, infants prefer three out of those nine possible sequences: labial-center, coronal-front, and dorsal-back [11], [12]. (C) Serial order in articulation of consonants in consonant-vowel-consonant(-vowel) sequences. In the present study, focusing on the relationship among articulators producing adjacent consonants, we divided sequences into four categories: (i) Sequences consists of consonants produced at the same place of articulation. (ii) Sequences produced by movements from more anterior place to posterior one. (iii) Sequences consist of coronal and dorsal consonants, which are articulated by the same organ but different places (intra-organ articulations). (iv) Sequences consist of labial and coronal/dorsal consonants, which are articulated by different organs: lips and tongue (inter-organ articulations).

Mentions: The human articulatory system consists of organs, such as the jaw, tongue and lips (Figure 1A). In order to produce speech sounds, speakers coordinate these organs to change the vocal tract configuration. In brief, these articulatory movements are close-open alternations of the vocal tract that generate series of consonant and vowels.


Development of a serial order in speech constrained by articulatory coordination.

Oohashi H, Watanabe H, Taga G - PLoS ONE (2013)

The classification of serial order in articulations in the previous and present studies.(A) The place of articulations for consonants and vowels, and articulatory organs involved in each consonant. Depending on the horizontal position of the tongue, vowels are categorized into three types including front, center and back. This figure illustrates three places of articulations, including labial, coronal and dorsal. Labial consonants are mainly articulated by the lips and jaw. Coronal consonants are mainly articulated by the tongue apex and jaw. Dorsal consonants are mainly articulated by the tongue dorsum and jaw. (B) Three consonant-vowel patterns preferred by infants in early development. Focusing on three consonantal and vowel categories, theoretically speaking, it is possible to produce nine consonant-vowel sequences. However, infants prefer three out of those nine possible sequences: labial-center, coronal-front, and dorsal-back [11], [12]. (C) Serial order in articulation of consonants in consonant-vowel-consonant(-vowel) sequences. In the present study, focusing on the relationship among articulators producing adjacent consonants, we divided sequences into four categories: (i) Sequences consists of consonants produced at the same place of articulation. (ii) Sequences produced by movements from more anterior place to posterior one. (iii) Sequences consist of coronal and dorsal consonants, which are articulated by the same organ but different places (intra-organ articulations). (iv) Sequences consist of labial and coronal/dorsal consonants, which are articulated by different organs: lips and tongue (inter-organ articulations).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3818465&req=5

pone-0078600-g001: The classification of serial order in articulations in the previous and present studies.(A) The place of articulations for consonants and vowels, and articulatory organs involved in each consonant. Depending on the horizontal position of the tongue, vowels are categorized into three types including front, center and back. This figure illustrates three places of articulations, including labial, coronal and dorsal. Labial consonants are mainly articulated by the lips and jaw. Coronal consonants are mainly articulated by the tongue apex and jaw. Dorsal consonants are mainly articulated by the tongue dorsum and jaw. (B) Three consonant-vowel patterns preferred by infants in early development. Focusing on three consonantal and vowel categories, theoretically speaking, it is possible to produce nine consonant-vowel sequences. However, infants prefer three out of those nine possible sequences: labial-center, coronal-front, and dorsal-back [11], [12]. (C) Serial order in articulation of consonants in consonant-vowel-consonant(-vowel) sequences. In the present study, focusing on the relationship among articulators producing adjacent consonants, we divided sequences into four categories: (i) Sequences consists of consonants produced at the same place of articulation. (ii) Sequences produced by movements from more anterior place to posterior one. (iii) Sequences consist of coronal and dorsal consonants, which are articulated by the same organ but different places (intra-organ articulations). (iv) Sequences consist of labial and coronal/dorsal consonants, which are articulated by different organs: lips and tongue (inter-organ articulations).
Mentions: The human articulatory system consists of organs, such as the jaw, tongue and lips (Figure 1A). In order to produce speech sounds, speakers coordinate these organs to change the vocal tract configuration. In brief, these articulatory movements are close-open alternations of the vocal tract that generate series of consonant and vowels.

Bottom Line: Furthermore, we reveal that serial order of different places of articulations within the same organ appears earlier and then gradually develops, whereas serial order of different articulatory organs appears later and then rapidly develops.In the same way, we also analyzed the sequences produced by English children and obtained similar developmental trends.These results suggest that the development of intra- and inter-articulator coordination constrains the acquisition of serial orders in speech with the complexity that characterizes adult language.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Education, The University of Tokyo, Tokyo, Japan ; Research Fellow of the Japan Society for the Promotion of Science, Koujimachi Business Center, Tokyo, Japan.

ABSTRACT
Universal linguistic constraints seem to govern the organization of sound sequences in words. However, our understanding of the origin and development of these constraints is incomplete. One possibility is that the development of neuromuscular control of articulators acts as a constraint for the emergence of sequences in words. Repetitions of the same consonant observed in early infancy and an increase in variation of consonantal sequences over months of age have been interpreted as a consequence of the development of neuromuscular control. Yet, it is not clear how sequential coordination of articulators such as lips, tongue apex and tongue dorsum constrains sequences of labial, coronal and dorsal consonants in words over the course of development. We examined longitudinal development of consonant-vowel-consonant(-vowel) sequences produced by Japanese children between 7 and 60 months of age. The sequences were classified according to places of articulation for corresponding consonants. The analyses of individual and group data show that infants prefer repetitive and fronting articulations, as shown in previous studies. Furthermore, we reveal that serial order of different places of articulations within the same organ appears earlier and then gradually develops, whereas serial order of different articulatory organs appears later and then rapidly develops. In the same way, we also analyzed the sequences produced by English children and obtained similar developmental trends. These results suggest that the development of intra- and inter-articulator coordination constrains the acquisition of serial orders in speech with the complexity that characterizes adult language.

Show MeSH
Related in: MedlinePlus