Limits...
Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice.

Khalki L, Ba M'hamed S, Sokar Z, Bennis M, Vinay L, Bras H, Viemari JC - PLoS ONE (2013)

Bottom Line: Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects.The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults.On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifiques et Techniques (URAC 37), Cadi Ayyad Université, Marrakech, Maroc ; Institut de Neurosciences de la Timone, P3M Team, CNRS, Aix Marseille Université, Marseille, France.

ABSTRACT
Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1 g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE) or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.

Show MeSH

Related in: MedlinePlus

Effects of fenugreek exposure on gait spatial parameters.(A) Schematic of the stride length (distance between successive placements of the same paw). Stride length of forelimbs (B) and hindlimbs (C) was significantly shorter in prenatally treated mice when compared with controls. (D) Schematic of the paw positioning: position of the hindpaw compared with position of the previously placed ipsilateral forepaw. (E) The position of the hindpaw compared with the forepaw is closer in the treated mice at P21 and P41. (F) The forelimbs paw intensity (mean brightness of the pixels of the print) of treated mice was significantly stronger at P41. (G) The hindlimbs paw intensity of treated mice was significantly decreased at P21 and increased at P41. *P<0.05, **P<0.01, ***P<0.001.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3818278&req=5

pone-0080013-g005: Effects of fenugreek exposure on gait spatial parameters.(A) Schematic of the stride length (distance between successive placements of the same paw). Stride length of forelimbs (B) and hindlimbs (C) was significantly shorter in prenatally treated mice when compared with controls. (D) Schematic of the paw positioning: position of the hindpaw compared with position of the previously placed ipsilateral forepaw. (E) The position of the hindpaw compared with the forepaw is closer in the treated mice at P21 and P41. (F) The forelimbs paw intensity (mean brightness of the pixels of the print) of treated mice was significantly stronger at P41. (G) The hindlimbs paw intensity of treated mice was significantly decreased at P21 and increased at P41. *P<0.05, **P<0.01, ***P<0.001.

Mentions: We then analyzed the static gait parameters. The base-of-support (BOS) for both fore- and hindlimbs was identical in treated and control groups. We measured the stride lengths of forepaws and hindpaws, the distance between consecutive steps (Figure 5A). The stride lengths were not significantly different at P21. At P41, it was shorter in prenatally FSAE treated mice (6.75 ± 0.1mm vs 7.26 ± 0.05 mm, U = 6; P = 0.0003 for the hindpaws and 6.74 ± 0.1 mm vs 7.2 ± 0.05 mm for the forepaws, U = 10; P = 0.001; Figure 5B, 5C). Regarding the relative paw position (Figure 5D), control mice placed their hindpaws 7 mm and 10 mm ahead of the position of the ipsilateral forepaws at P21 at P41, respectively. In treated mice, this distance was smaller [0.4 cm at P21 (U = 12; P = 0.005) and 0.6 cm at P41 (U = 0; P = 0.007), Figure 5E). We then calculated the paw intensity, the mean intensity with which the paw is placed was computed over the whole stance period. At P21, treated mice hindpaws intensity is lower compared with controls (U = 51; P = 0.0005). However, at P41 the intensity increased and was significantly higher in both fore- (U = 13; P = 0.003) and hindlimbs (U = 14; P = 0.01) in treated mice compared with controls (Figure 5F,G).


Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice.

Khalki L, Ba M'hamed S, Sokar Z, Bennis M, Vinay L, Bras H, Viemari JC - PLoS ONE (2013)

Effects of fenugreek exposure on gait spatial parameters.(A) Schematic of the stride length (distance between successive placements of the same paw). Stride length of forelimbs (B) and hindlimbs (C) was significantly shorter in prenatally treated mice when compared with controls. (D) Schematic of the paw positioning: position of the hindpaw compared with position of the previously placed ipsilateral forepaw. (E) The position of the hindpaw compared with the forepaw is closer in the treated mice at P21 and P41. (F) The forelimbs paw intensity (mean brightness of the pixels of the print) of treated mice was significantly stronger at P41. (G) The hindlimbs paw intensity of treated mice was significantly decreased at P21 and increased at P41. *P<0.05, **P<0.01, ***P<0.001.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3818278&req=5

pone-0080013-g005: Effects of fenugreek exposure on gait spatial parameters.(A) Schematic of the stride length (distance between successive placements of the same paw). Stride length of forelimbs (B) and hindlimbs (C) was significantly shorter in prenatally treated mice when compared with controls. (D) Schematic of the paw positioning: position of the hindpaw compared with position of the previously placed ipsilateral forepaw. (E) The position of the hindpaw compared with the forepaw is closer in the treated mice at P21 and P41. (F) The forelimbs paw intensity (mean brightness of the pixels of the print) of treated mice was significantly stronger at P41. (G) The hindlimbs paw intensity of treated mice was significantly decreased at P21 and increased at P41. *P<0.05, **P<0.01, ***P<0.001.
Mentions: We then analyzed the static gait parameters. The base-of-support (BOS) for both fore- and hindlimbs was identical in treated and control groups. We measured the stride lengths of forepaws and hindpaws, the distance between consecutive steps (Figure 5A). The stride lengths were not significantly different at P21. At P41, it was shorter in prenatally FSAE treated mice (6.75 ± 0.1mm vs 7.26 ± 0.05 mm, U = 6; P = 0.0003 for the hindpaws and 6.74 ± 0.1 mm vs 7.2 ± 0.05 mm for the forepaws, U = 10; P = 0.001; Figure 5B, 5C). Regarding the relative paw position (Figure 5D), control mice placed their hindpaws 7 mm and 10 mm ahead of the position of the ipsilateral forepaws at P21 at P41, respectively. In treated mice, this distance was smaller [0.4 cm at P21 (U = 12; P = 0.005) and 0.6 cm at P41 (U = 0; P = 0.007), Figure 5E). We then calculated the paw intensity, the mean intensity with which the paw is placed was computed over the whole stance period. At P21, treated mice hindpaws intensity is lower compared with controls (U = 51; P = 0.0005). However, at P41 the intensity increased and was significantly higher in both fore- (U = 13; P = 0.003) and hindlimbs (U = 14; P = 0.01) in treated mice compared with controls (Figure 5F,G).

Bottom Line: Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects.The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults.On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Pharmacologie, Neurobiologie et Comportement, Centre National de la Recherche Scientifiques et Techniques (URAC 37), Cadi Ayyad Université, Marrakech, Maroc ; Institut de Neurosciences de la Timone, P3M Team, CNRS, Aix Marseille Université, Marseille, France.

ABSTRACT
Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1 g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE) or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.

Show MeSH
Related in: MedlinePlus