Limits...
Validity of ultrasound muscle thickness measurements for predicting leg skeletal muscle mass in healthy Japanese middle-aged and older individuals.

Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, Fukunaga T, Kanehisa H - J Physiol Anthropol (2013)

Bottom Line: From the perspective of physical resources, leg muscle mass dominantly decreases after the end of the fifth decade.The estimated LTM (7.0 ± 1.7 kg) did not significantly differ from the measured LTM (7.0 ± 1.7 kg), without a significant systematic error on a Bland-Altman plot.The application of this equation for the cross-validation group (14 women and 11 men) did not yield a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) LTM and systematic error.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 891-2393, Japan. y-takai@nifs-k.ac.jp.

ABSTRACT

Background: The skeletal muscle mass of the lower limb plays a role in its mobility during daily life. From the perspective of physical resources, leg muscle mass dominantly decreases after the end of the fifth decade. Therefore, an accurate estimate of the muscle mass is important for the middle-aged and older population. The present study aimed to clarify the validity of ultrasound muscle thickness (MT) measurements for predicting leg skeletal muscle mass (SM) in the healthy Japanese middle-aged and older population.

Findings: MTs at four sites of the lower limb and the bone-free lean tissue mass (LTM) of the right leg were determined using brightness-mode ultrasonography and dual-energy X-ray absorptiometry (DXA), respectively, in 44 women and 33 men, 52- to 78-years old. LTM was used as a representative variable of leg skeletal muscle mass. In the model-development group (30 women and 22 men), regression analysis produced an equation with R2 and standard error of the estimate (SEE) of 0.958 and 0.3 kg, respectively: LTM (kg) = 0.01464 × (MTSUM×L) (cm2) - 2.767, where MTSUM is the sum of the product of MTs at four sites, and L is length of segment where MT is determined. The estimated LTM (7.0 ± 1.7 kg) did not significantly differ from the measured LTM (7.0 ± 1.7 kg), without a significant systematic error on a Bland-Altman plot. The application of this equation for the cross-validation group (14 women and 11 men) did not yield a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) LTM and systematic error.

Conclusion: The developed prediction equation may be useful for estimating the lean tissue mass of the lower extremity for the healthy Japanese middle-aged and older population.

Show MeSH

Related in: MedlinePlus

Relationship between the measured and estimated leg lean tissue mass (LTM) in the model-development group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3817997&req=5

Figure 1: Relationship between the measured and estimated leg lean tissue mass (LTM) in the model-development group.

Mentions: Descriptive data for the MT and DXA measurements are summarized in Table 1. In the model-development group, multiple regression analysis produced an equation predicting the measured leg LTM, with only MTSUM×L as a significant independent variable: leg LTM (kg) = 0.01464 × (MTSUM×L) (cm2) - 2.767. The R2 and SEE of this equation were 0.958 and 0.3 kg (%SEE = 4.3%), respectively (Figure 1). The estimated leg LTM (7.0 ± 1.7 kg) did not significantly differ from the measured leg LTM (7.0 ± 1.7 kg), without a significant systematic error in the Bland-Altman plot (Figure 2). The application of this equation for the cross-validation group did not produce a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) leg LTM and systematic error (r = -0.012, non significant).


Validity of ultrasound muscle thickness measurements for predicting leg skeletal muscle mass in healthy Japanese middle-aged and older individuals.

Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, Fukunaga T, Kanehisa H - J Physiol Anthropol (2013)

Relationship between the measured and estimated leg lean tissue mass (LTM) in the model-development group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3817997&req=5

Figure 1: Relationship between the measured and estimated leg lean tissue mass (LTM) in the model-development group.
Mentions: Descriptive data for the MT and DXA measurements are summarized in Table 1. In the model-development group, multiple regression analysis produced an equation predicting the measured leg LTM, with only MTSUM×L as a significant independent variable: leg LTM (kg) = 0.01464 × (MTSUM×L) (cm2) - 2.767. The R2 and SEE of this equation were 0.958 and 0.3 kg (%SEE = 4.3%), respectively (Figure 1). The estimated leg LTM (7.0 ± 1.7 kg) did not significantly differ from the measured leg LTM (7.0 ± 1.7 kg), without a significant systematic error in the Bland-Altman plot (Figure 2). The application of this equation for the cross-validation group did not produce a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) leg LTM and systematic error (r = -0.012, non significant).

Bottom Line: From the perspective of physical resources, leg muscle mass dominantly decreases after the end of the fifth decade.The estimated LTM (7.0 ± 1.7 kg) did not significantly differ from the measured LTM (7.0 ± 1.7 kg), without a significant systematic error on a Bland-Altman plot.The application of this equation for the cross-validation group (14 women and 11 men) did not yield a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) LTM and systematic error.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Institute of Fitness and Sports in Kanoya, 1 Shiromizu, Kanoya, Kagoshima 891-2393, Japan. y-takai@nifs-k.ac.jp.

ABSTRACT

Background: The skeletal muscle mass of the lower limb plays a role in its mobility during daily life. From the perspective of physical resources, leg muscle mass dominantly decreases after the end of the fifth decade. Therefore, an accurate estimate of the muscle mass is important for the middle-aged and older population. The present study aimed to clarify the validity of ultrasound muscle thickness (MT) measurements for predicting leg skeletal muscle mass (SM) in the healthy Japanese middle-aged and older population.

Findings: MTs at four sites of the lower limb and the bone-free lean tissue mass (LTM) of the right leg were determined using brightness-mode ultrasonography and dual-energy X-ray absorptiometry (DXA), respectively, in 44 women and 33 men, 52- to 78-years old. LTM was used as a representative variable of leg skeletal muscle mass. In the model-development group (30 women and 22 men), regression analysis produced an equation with R2 and standard error of the estimate (SEE) of 0.958 and 0.3 kg, respectively: LTM (kg) = 0.01464 × (MTSUM×L) (cm2) - 2.767, where MTSUM is the sum of the product of MTs at four sites, and L is length of segment where MT is determined. The estimated LTM (7.0 ± 1.7 kg) did not significantly differ from the measured LTM (7.0 ± 1.7 kg), without a significant systematic error on a Bland-Altman plot. The application of this equation for the cross-validation group (14 women and 11 men) did not yield a significant difference between the measured (7.2 ± 1.6 kg) or estimated (7.2 ± 1.6 kg) LTM and systematic error.

Conclusion: The developed prediction equation may be useful for estimating the lean tissue mass of the lower extremity for the healthy Japanese middle-aged and older population.

Show MeSH
Related in: MedlinePlus