Limits...
Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atorvastatin for hyperlipidemia in rats.

Wang M, Wang F, Wang Y, Ma X, Zhao M, Zhao C - PLoS ONE (2013)

Bottom Line: Using (1)H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin.Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays.GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO).

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China ; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.

ABSTRACT
Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia model treated with GP and a hyperlipidemia model treated with atorvastatin. Using (1)H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in vivo.

Show MeSH

Related in: MedlinePlus

PR analysis of the 1H-NMR spectra of rat plasma.(A): PCA analysis of the spectra of plasma from normal and hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3815346&req=5

pone-0078731-g003: PR analysis of the 1H-NMR spectra of rat plasma.(A): PCA analysis of the spectra of plasma from normal and hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.

Mentions: After centralization and normalization of integral data using SIMCA-P12.0, pattern recognition analysis was conducted by employing PCA and OPLS-DA. In Figure 3, each point represents one sample, and different sample assembly revealed different metabolic patterns.


Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atorvastatin for hyperlipidemia in rats.

Wang M, Wang F, Wang Y, Ma X, Zhao M, Zhao C - PLoS ONE (2013)

PR analysis of the 1H-NMR spectra of rat plasma.(A): PCA analysis of the spectra of plasma from normal and hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3815346&req=5

pone-0078731-g003: PR analysis of the 1H-NMR spectra of rat plasma.(A): PCA analysis of the spectra of plasma from normal and hyperlipidemia rats (R2X=0.988, Q2=0.885). (B): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats (R2X=0.925, R2Y=0.874, Q2=0.642). (C): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and GP-treated rats (R2X=0.968, R2Y=0.878, Q2=0.538). (D): Scores plot of the OPLS-DA analysis of the spectra from the plasma of normal, hyperlipidemia and Atorvastatin-treated rats (R2X=0.909, R2Y=0.522, Q2=0.328). (E): Loading plot of the OPLS-DA analysis of the spectra from the plasma of normal and hyperlipidemia rats.
Mentions: After centralization and normalization of integral data using SIMCA-P12.0, pattern recognition analysis was conducted by employing PCA and OPLS-DA. In Figure 3, each point represents one sample, and different sample assembly revealed different metabolic patterns.

Bottom Line: Using (1)H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin.Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays.GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO).

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China ; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.

ABSTRACT
Gynostemma pentaphyllum (GP) is widely used for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China, and atorvastatin is broadly used as an anti-hyperlipidemia drug. This research focuses on the plasma and liver metabolites in the following four groups of rats: control, a hyperlipidemia model, a hyperlipidemia model treated with GP and a hyperlipidemia model treated with atorvastatin. Using (1)H-NMR-based metabonomics, we elucidated the therapeutic mechanisms of GP and atorvastatin. Orthogonal Partial Least Squares-Discriminant analysis (OPLS-DA) plotting of the metabolic state and analysis of potential biomarkers in the plasma and liver correlated well with the results of biochemical assays. GP can effectively affect lipid metabolism, and it exerts its anti-hyperlipidemia effect by elevating the level of phosphatidylcholine and decreasing the level of trimethylamine N-oxide (TMAO). In contrast, atorvastatin affects hyperlipidemia mainly during lipid metabolism and protein metabolism in vivo.

Show MeSH
Related in: MedlinePlus