Limits...
In vitro detection of prionemia in TSE-infected cervids and hamsters.

Elder AM, Henderson DM, Nalls AV, Wilham JM, Caughey BW, Hoover EA, Kincaid AE, Bartz JC, Mathiason CK - PLoS ONE (2013)

Bottom Line: Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety.Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals.Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.

ABSTRACT
Blood-borne transmission of infectious prions during the symptomatic and asymptomatic stages of disease occurs for both human and animal transmissible spongiform encephalopathies (TSEs). The geographical distribution of the cervid TSE, chronic wasting disease (CWD), continues to spread across North America and the prospective number of individuals harboring an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety. Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While bioassay provides high sensitivity and specificity, it requires many months, animals, and it is costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.

Show MeSH

Related in: MedlinePlus

RT-QuIC comparison of brain and blood samples.Ten percent (10%) brain homogenates were serially diluted (10-5 to 10-8) and assayed by RT-QuIC for 60 hours. Blood samples were diluted to 10-2 and run in triplicate for 60 hours with ThT fluorescence level above threshold determining positivity. CWD-infected blood diluted 10-2 is seen to have similar levels of PrPC converting activity as CWD-positive brain diluted 10-6 and 10-7. UN= Uninfected; INF= Infected.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3815098&req=5

pone-0080203-g004: RT-QuIC comparison of brain and blood samples.Ten percent (10%) brain homogenates were serially diluted (10-5 to 10-8) and assayed by RT-QuIC for 60 hours. Blood samples were diluted to 10-2 and run in triplicate for 60 hours with ThT fluorescence level above threshold determining positivity. CWD-infected blood diluted 10-2 is seen to have similar levels of PrPC converting activity as CWD-positive brain diluted 10-6 and 10-7. UN= Uninfected; INF= Infected.

Mentions: To evaluate the levels of PrPD present in NaPTA concentrated whole blood samples, PrPC-converting activity was compared to that detected in serial dilutions of CWD-positive white-tailed deer brain (Figure 4). NaPTA treated whole blood (500 µl starting volume of whole blood concentrated to 50 µl) diluted to 10-2 demonstrated PrPD levels approximately equivalent to that measured in 10-6-10-7 dilution of CWD-positive brain. Equivalence was determined by comparison of the time to positivity for whole blood and brain samples.


In vitro detection of prionemia in TSE-infected cervids and hamsters.

Elder AM, Henderson DM, Nalls AV, Wilham JM, Caughey BW, Hoover EA, Kincaid AE, Bartz JC, Mathiason CK - PLoS ONE (2013)

RT-QuIC comparison of brain and blood samples.Ten percent (10%) brain homogenates were serially diluted (10-5 to 10-8) and assayed by RT-QuIC for 60 hours. Blood samples were diluted to 10-2 and run in triplicate for 60 hours with ThT fluorescence level above threshold determining positivity. CWD-infected blood diluted 10-2 is seen to have similar levels of PrPC converting activity as CWD-positive brain diluted 10-6 and 10-7. UN= Uninfected; INF= Infected.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3815098&req=5

pone-0080203-g004: RT-QuIC comparison of brain and blood samples.Ten percent (10%) brain homogenates were serially diluted (10-5 to 10-8) and assayed by RT-QuIC for 60 hours. Blood samples were diluted to 10-2 and run in triplicate for 60 hours with ThT fluorescence level above threshold determining positivity. CWD-infected blood diluted 10-2 is seen to have similar levels of PrPC converting activity as CWD-positive brain diluted 10-6 and 10-7. UN= Uninfected; INF= Infected.
Mentions: To evaluate the levels of PrPD present in NaPTA concentrated whole blood samples, PrPC-converting activity was compared to that detected in serial dilutions of CWD-positive white-tailed deer brain (Figure 4). NaPTA treated whole blood (500 µl starting volume of whole blood concentrated to 50 µl) diluted to 10-2 demonstrated PrPD levels approximately equivalent to that measured in 10-6-10-7 dilution of CWD-positive brain. Equivalence was determined by comparison of the time to positivity for whole blood and brain samples.

Bottom Line: Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety.Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals.Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.

ABSTRACT
Blood-borne transmission of infectious prions during the symptomatic and asymptomatic stages of disease occurs for both human and animal transmissible spongiform encephalopathies (TSEs). The geographical distribution of the cervid TSE, chronic wasting disease (CWD), continues to spread across North America and the prospective number of individuals harboring an asymptomatic infection of human variant Creutzfeldt-Jakob Disease (vCJD) in the United Kingdom has been projected to be ~1 in 3000 residents. Thus, it is important to monitor cervid and human blood products to ensure herd health and human safety. Current methods for detecting blood-associated prions rely primarily upon bioassay in laboratory animals. While bioassay provides high sensitivity and specificity, it requires many months, animals, and it is costly. Here we report modification of the real time quaking-induced conversion (RT-QuIC) assay to detect blood-borne prions in whole blood from prion-infected preclinical white-tailed deer, muntjac deer, and Syrian hamsters, attaining sensitivity of >90% while maintaining 100% specificity. Our results indicate that RT-QuIC methodology as modified can provide consistent and reliable detection of blood-borne prions in preclinical and symptomatic stages of two animal TSEs, offering promise for prionemia detection in other species, including humans.

Show MeSH
Related in: MedlinePlus