Limits...
Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

View Article: PubMed Central

ABSTRACT

Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

No MeSH data available.


Viscosity characteristics of COC resins.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814873&req=5

f10-sensors-07-01643: Viscosity characteristics of COC resins.

Mentions: The materials used for test injection process were COC (cyclic olefin copolymer), which have good material properties, such as high transparency, low double refraction, low absorptive property, and biocompatibility, etc. To investigate the injection characteristics using the developed molds, two types of COC resins (Topas 5013S-04 and 8007S-04) were used. Thermal properties of COC and their viscosity characteristics are shown in Table 2 and Figure 10.


Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips
Viscosity characteristics of COC resins.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814873&req=5

f10-sensors-07-01643: Viscosity characteristics of COC resins.
Mentions: The materials used for test injection process were COC (cyclic olefin copolymer), which have good material properties, such as high transparency, low double refraction, low absorptive property, and biocompatibility, etc. To investigate the injection characteristics using the developed molds, two types of COC resins (Topas 5013S-04 and 8007S-04) were used. Thermal properties of COC and their viscosity characteristics are shown in Table 2 and Figure 10.

View Article: PubMed Central

ABSTRACT

Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

No MeSH data available.