Limits...
Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

View Article: PubMed Central

ABSTRACT

Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

No MeSH data available.


A disposable lab-on-a-chip device with a specific bead packed column for MALDI-MS.[3]
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814873&req=5

f1-sensors-07-01643: A disposable lab-on-a-chip device with a specific bead packed column for MALDI-MS.[3]

Mentions: Figure 1 shows a sample of the LOC designed by the MicroSystems and BioMEMS Lab at University of Cincinnati.[3] As can be seen in the figure, there are many micro-channels for the required biochemical processes. Thus, for the experiments of this research, a simplified biochip with micro-channels was designed based on the existing research results as illustrated in Figure 2. The designed biochip is composed of an upper plate C and a bottom plate D (Figure 2(a)). By closing the upper plate, square-type micro channels (width=100μm and depth=100μm) can be formed between the plates (Figure 2(b)). As shown in the Figure 2(c), A1 and A2 are the inlet ports for the reagent and test sample; B is the sensing port of the reaction result. The micro-channel is formed between the ports A and B for sufficient mixing of the reagent and test sample. It is designed to have 90mm of total flow distance and 70mm of detection length for 700nl resolution.


Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips
A disposable lab-on-a-chip device with a specific bead packed column for MALDI-MS.[3]
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814873&req=5

f1-sensors-07-01643: A disposable lab-on-a-chip device with a specific bead packed column for MALDI-MS.[3]
Mentions: Figure 1 shows a sample of the LOC designed by the MicroSystems and BioMEMS Lab at University of Cincinnati.[3] As can be seen in the figure, there are many micro-channels for the required biochemical processes. Thus, for the experiments of this research, a simplified biochip with micro-channels was designed based on the existing research results as illustrated in Figure 2. The designed biochip is composed of an upper plate C and a bottom plate D (Figure 2(a)). By closing the upper plate, square-type micro channels (width=100μm and depth=100μm) can be formed between the plates (Figure 2(b)). As shown in the Figure 2(c), A1 and A2 are the inlet ports for the reagent and test sample; B is the sensing port of the reaction result. The micro-channel is formed between the ports A and B for sufficient mixing of the reagent and test sample. It is designed to have 90mm of total flow distance and 70mm of detection length for 700nl resolution.

View Article: PubMed Central

ABSTRACT

Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for microfluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

No MeSH data available.