Limits...
Studies on the development of potential biomarkers for rapid assessment of copper toxicity to freshwater fish using Esomus danricus as model.

Vutukuru SS, Suma C, Radha Madhavi K - Int J Environ Res Public Health (2005)

Bottom Line: The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402 mg/L).Fish groups were separately exposed to lethal (5.5 mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels.Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area.

View Article: PubMed Central - PubMed

Affiliation: Environmental and Molecular Toxicology Laboratory, Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad-500 072, Andhra Pradesh, India.

ABSTRACT
Living in an environment that has been altered considerably by anthropogenic activities, fish are often exposed to a multitude of stressors including heavy metals. Copper ions are quite toxic to fish when concentrations are increased in environmental exposures often resulting in physiological, histological, biochemical and enzymatic alterations in fish, which have a great potential to serve as biomarkers. Esomus danricus was chosen as model in the present study and the metabolic rate, gill morphology, total glycogen, total protein, superoxide dismutase and catalase were critically evaluated. The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402 mg/L). Fish groups were separately exposed to lethal (5.5 mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels. Controls were also maintained simultaneously. Significant decrease in the metabolic rate (p<0.001) of the fish was observed in both the concentrations studied. Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area. Biochemical profiles like total glycogen and total protein in gills and muscle of fish exposed to 5.5 mg/L showed appreciable decrease (p<0.05 to 0.001) from control. Significant inhibition of superoxide dismutase (60.83%), catalase (71.57%) from control was observed in fish exposed to 5.5 mg/L at the end of 96h exposure only. Interestingly, in fish exposed to 0.55 mg/L enzyme activity is not affected except for catalase. Toxic responses evaluated at various functional levels are more pronounced in fish exposed to 5.5 mg/L and these can serve as potential biomarkers for rapid assessment of acute copper toxicity in environmental biomonitoring.

Show MeSH

Related in: MedlinePlus

Alterations in gill of Esomus exposed to sub-lethal concentration (0.55mg/L) of copper
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814698&req=5

f3-ijerph-02-00063: Alterations in gill of Esomus exposed to sub-lethal concentration (0.55mg/L) of copper

Mentions: Figure 1 shows the histological structure of the normal gill characterized by the presence of primary lamellae along with secondary lamellae, shaft and rakers confirming the general architecture of the tissue. Gills exposed to 5.5 mg/L of copper have shown that the metal affected the primary and secondary lamellae, rakers and shaft. Figure 2 illustrates the degeneration of secondary gill lamellae with loss of original shape due to the onset of necrosis. Fish gills exposed to 0.55 mg/L shown that copper exposure produced hyper secretion of mucous (Figure 3).


Studies on the development of potential biomarkers for rapid assessment of copper toxicity to freshwater fish using Esomus danricus as model.

Vutukuru SS, Suma C, Radha Madhavi K - Int J Environ Res Public Health (2005)

Alterations in gill of Esomus exposed to sub-lethal concentration (0.55mg/L) of copper
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814698&req=5

f3-ijerph-02-00063: Alterations in gill of Esomus exposed to sub-lethal concentration (0.55mg/L) of copper
Mentions: Figure 1 shows the histological structure of the normal gill characterized by the presence of primary lamellae along with secondary lamellae, shaft and rakers confirming the general architecture of the tissue. Gills exposed to 5.5 mg/L of copper have shown that the metal affected the primary and secondary lamellae, rakers and shaft. Figure 2 illustrates the degeneration of secondary gill lamellae with loss of original shape due to the onset of necrosis. Fish gills exposed to 0.55 mg/L shown that copper exposure produced hyper secretion of mucous (Figure 3).

Bottom Line: The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402 mg/L).Fish groups were separately exposed to lethal (5.5 mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels.Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area.

View Article: PubMed Central - PubMed

Affiliation: Environmental and Molecular Toxicology Laboratory, Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad-500 072, Andhra Pradesh, India.

ABSTRACT
Living in an environment that has been altered considerably by anthropogenic activities, fish are often exposed to a multitude of stressors including heavy metals. Copper ions are quite toxic to fish when concentrations are increased in environmental exposures often resulting in physiological, histological, biochemical and enzymatic alterations in fish, which have a great potential to serve as biomarkers. Esomus danricus was chosen as model in the present study and the metabolic rate, gill morphology, total glycogen, total protein, superoxide dismutase and catalase were critically evaluated. The 96h LC50 value was found to be 5.5mg/L (Cu as 1.402 mg/L). Fish groups were separately exposed to lethal (5.5 mg/L) and sub lethal concentrations (0.55 mg/L) of copper sulphate over a period of 96h to examine the subtle effects caused at various functional levels. Controls were also maintained simultaneously. Significant decrease in the metabolic rate (p<0.001) of the fish was observed in both the concentrations studied. Studies employing Automated Video Tracking System revealed gross changes in the architecture of gill morphology like loss, fusion, clubbing of secondary gill lamellae, and detachment of gill rakers following softening of gill shaft in fish under lethal exposures indicating reduced respiratory surface area. Biochemical profiles like total glycogen and total protein in gills and muscle of fish exposed to 5.5 mg/L showed appreciable decrease (p<0.05 to 0.001) from control. Significant inhibition of superoxide dismutase (60.83%), catalase (71.57%) from control was observed in fish exposed to 5.5 mg/L at the end of 96h exposure only. Interestingly, in fish exposed to 0.55 mg/L enzyme activity is not affected except for catalase. Toxic responses evaluated at various functional levels are more pronounced in fish exposed to 5.5 mg/L and these can serve as potential biomarkers for rapid assessment of acute copper toxicity in environmental biomonitoring.

Show MeSH
Related in: MedlinePlus