Limits...
Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies.

Schurz M, Aichhorn M, Martin A, Perner J - Front Hum Neurosci (2013)

Bottom Line: Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality.In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ).Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA).

View Article: PubMed Central - PubMed

Affiliation: Center for Neurocognitive Research, University of Salzburg Salzburg, Austria ; Department of Psychology, University of Salzburg Salzburg, Austria.

ABSTRACT
We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted.

No MeSH data available.


Related in: MedlinePlus

(A) Results of meta-analyses for false belief reasoning (blue) and visual perspective taking (red). Overlap between result maps is shown in purple. (B) Results of a conjunction analysis searching for brain areas active for false belief reasoning AND visual perspective taking. All maps were thresholded at voxel-wise threshold of p < 0.005 uncorrected and a cluster extent threshold 10 voxels.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3814428&req=5

Figure 1: (A) Results of meta-analyses for false belief reasoning (blue) and visual perspective taking (red). Overlap between result maps is shown in purple. (B) Results of a conjunction analysis searching for brain areas active for false belief reasoning AND visual perspective taking. All maps were thresholded at voxel-wise threshold of p < 0.005 uncorrected and a cluster extent threshold 10 voxels.

Mentions: We then applied a number of methodological selection-criteria to the literature identified by our search (see e.g., Radua et al., 2012). Studies were only selected if they had performed a whole brain analysis and reported activation coordinates in standard space (MNI or Talairach). We ensured that the same threshold throughout the whole brain was used within each included study, in order to avoid biases toward liberally thresholded brain regions. This does not mean that different studies should employ the same threshold. We included 25 studies (N = 419) in our meta-analysis on false belief and 14 studies (N = 216) in our meta-analysis on visual perspective taking. We used Effect-Size Signed Differential Mapping (ES-SDM) software, version 2.31 for meta-analysis (Radua et al., 2010, 2012; http://www.sdmproject.com). ES-SDM uses standard effect size and variance-based meta-analytic calculations. Based on the reported t-values and the sample size of a study, ES-SDM creates a map of effect-sizes (Hedge's g values) and their variances. Variance is estimated from the map of effect-sizes and the sample size of the study. Effect- sizes are exactly calculated for those voxels containing a peak reported in the results table of an original study. For the rest of the voxels, an effect-size is estimated depending on the distance to close peaks (<20 mm) by means of an unnormalized Gaussian kernel. In the present analysis, we used the recommended Gaussian kernel with a FWHM of 20 mm. A validation study which compared the results of coordinate based ES-SDM meta-analysis to the results of a standard voxel-wise GLM analysis of the same original data (Radua et al., 2012) found that this FWHM provided an optimal balance between sensitivity and specificity. For statistical-analysis, all foci were transformed to Talairach space which is the native space of the software, by using the matrix transformations proposed by Lancaster et al. (2007). We calculated a mean analysis for each task-group. Calculation of the meta-analytic mean map is implemented by a random-effects model in which each study is weighted by the inverse of the sum of its variance plus an estimate of between-study heterogeneity. The latter is obtained by the DerSimonian-Laird method (DerSimonian and Laird, 1986). This approach enables studies with larger sample size or lower variability to contribute more and that effects are assumed to randomly vary between samples. The statistical significance was assessed by a permutation test; 100 random maps were generated with the same number of input foci as included in the to-be-tested map (see Radua et al., 2012). Finally, the meta-analytic maps were thresholded using a voxel-level (height) threshold of p < 0.005 (uncorrected) and a cluster-level (extent) threshold of 10 voxels. This uncorrected threshold was found to optimally balance sensitivity and specificity, and to be an approximate equivalent to a corrected threshold of p < 0.05 in original neuroimaging studies (Radua et al., 2012). We performed a conjunction analysis (see Figure 1B) with the “image calculator” utility in SPM8 (www.fil.ion.ucl.ac.uk). Conjoint activation is determined by a voxel-wise combination of results by a logical AND function. For convenience, we report all activations in MNI-space.


Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies.

Schurz M, Aichhorn M, Martin A, Perner J - Front Hum Neurosci (2013)

(A) Results of meta-analyses for false belief reasoning (blue) and visual perspective taking (red). Overlap between result maps is shown in purple. (B) Results of a conjunction analysis searching for brain areas active for false belief reasoning AND visual perspective taking. All maps were thresholded at voxel-wise threshold of p < 0.005 uncorrected and a cluster extent threshold 10 voxels.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3814428&req=5

Figure 1: (A) Results of meta-analyses for false belief reasoning (blue) and visual perspective taking (red). Overlap between result maps is shown in purple. (B) Results of a conjunction analysis searching for brain areas active for false belief reasoning AND visual perspective taking. All maps were thresholded at voxel-wise threshold of p < 0.005 uncorrected and a cluster extent threshold 10 voxels.
Mentions: We then applied a number of methodological selection-criteria to the literature identified by our search (see e.g., Radua et al., 2012). Studies were only selected if they had performed a whole brain analysis and reported activation coordinates in standard space (MNI or Talairach). We ensured that the same threshold throughout the whole brain was used within each included study, in order to avoid biases toward liberally thresholded brain regions. This does not mean that different studies should employ the same threshold. We included 25 studies (N = 419) in our meta-analysis on false belief and 14 studies (N = 216) in our meta-analysis on visual perspective taking. We used Effect-Size Signed Differential Mapping (ES-SDM) software, version 2.31 for meta-analysis (Radua et al., 2010, 2012; http://www.sdmproject.com). ES-SDM uses standard effect size and variance-based meta-analytic calculations. Based on the reported t-values and the sample size of a study, ES-SDM creates a map of effect-sizes (Hedge's g values) and their variances. Variance is estimated from the map of effect-sizes and the sample size of the study. Effect- sizes are exactly calculated for those voxels containing a peak reported in the results table of an original study. For the rest of the voxels, an effect-size is estimated depending on the distance to close peaks (<20 mm) by means of an unnormalized Gaussian kernel. In the present analysis, we used the recommended Gaussian kernel with a FWHM of 20 mm. A validation study which compared the results of coordinate based ES-SDM meta-analysis to the results of a standard voxel-wise GLM analysis of the same original data (Radua et al., 2012) found that this FWHM provided an optimal balance between sensitivity and specificity. For statistical-analysis, all foci were transformed to Talairach space which is the native space of the software, by using the matrix transformations proposed by Lancaster et al. (2007). We calculated a mean analysis for each task-group. Calculation of the meta-analytic mean map is implemented by a random-effects model in which each study is weighted by the inverse of the sum of its variance plus an estimate of between-study heterogeneity. The latter is obtained by the DerSimonian-Laird method (DerSimonian and Laird, 1986). This approach enables studies with larger sample size or lower variability to contribute more and that effects are assumed to randomly vary between samples. The statistical significance was assessed by a permutation test; 100 random maps were generated with the same number of input foci as included in the to-be-tested map (see Radua et al., 2012). Finally, the meta-analytic maps were thresholded using a voxel-level (height) threshold of p < 0.005 (uncorrected) and a cluster-level (extent) threshold of 10 voxels. This uncorrected threshold was found to optimally balance sensitivity and specificity, and to be an approximate equivalent to a corrected threshold of p < 0.05 in original neuroimaging studies (Radua et al., 2012). We performed a conjunction analysis (see Figure 1B) with the “image calculator” utility in SPM8 (www.fil.ion.ucl.ac.uk). Conjoint activation is determined by a voxel-wise combination of results by a logical AND function. For convenience, we report all activations in MNI-space.

Bottom Line: Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality.In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ).Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA).

View Article: PubMed Central - PubMed

Affiliation: Center for Neurocognitive Research, University of Salzburg Salzburg, Austria ; Department of Psychology, University of Salzburg Salzburg, Austria.

ABSTRACT
We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted.

No MeSH data available.


Related in: MedlinePlus