Limits...
Temperature-responsive gelation of type I collagen solutions involving fibril formation and genipin crosslinking as a potential injectable hydrogel.

Yunoki S, Ohyabu Y, Hatayama H - Int J Biomater (2013)

Bottom Line: The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points.In specific cases PSC would be preferred over ASC as an injectable gel system.The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan.

ABSTRACT
We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC) and acid-solubilized collagen (ASC) as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0-2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points. In specific cases PSC would be preferred over ASC as an injectable gel system. The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation. The elastic modulus of the 0.5% PSC/genipin gel system could be adjusted in a range of 2.5 to 50 kPa by the PSC and genipin concentrations, suggesting that a PSC/genipin solution is a potential injectable gel system for drug and cell carriers, with mechanical properties matching those of living tissues.

No MeSH data available.


SEM images of cross-sections of dried PSC/genipin gels at genipin concentrations of (a) 0 mM, (b) 0.5 mM, (c) 1 mM, and (d) 2 mM.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814099&req=5

fig6: SEM images of cross-sections of dried PSC/genipin gels at genipin concentrations of (a) 0 mM, (b) 0.5 mM, (c) 1 mM, and (d) 2 mM.

Mentions: Figure 6 shows SEM images of the cross-sections of dried PSC/genipin gels. A drying process using t-butyl alcohol sublimation enabled observation of collagen fibrils in the gels with minimal destruction. PSC/genipin gels at genipin concentrations of 0.5, 1, and 2 mM (Figures 6(b)–6(d)) showed networks of collagen nanofibrils resembling those obtained from PSC gel containing no genipin (Figure 6(a)). We must note that the apparent fibril density in the SEM images became similar by the alcohol dehydration and sublimation process.


Temperature-responsive gelation of type I collagen solutions involving fibril formation and genipin crosslinking as a potential injectable hydrogel.

Yunoki S, Ohyabu Y, Hatayama H - Int J Biomater (2013)

SEM images of cross-sections of dried PSC/genipin gels at genipin concentrations of (a) 0 mM, (b) 0.5 mM, (c) 1 mM, and (d) 2 mM.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814099&req=5

fig6: SEM images of cross-sections of dried PSC/genipin gels at genipin concentrations of (a) 0 mM, (b) 0.5 mM, (c) 1 mM, and (d) 2 mM.
Mentions: Figure 6 shows SEM images of the cross-sections of dried PSC/genipin gels. A drying process using t-butyl alcohol sublimation enabled observation of collagen fibrils in the gels with minimal destruction. PSC/genipin gels at genipin concentrations of 0.5, 1, and 2 mM (Figures 6(b)–6(d)) showed networks of collagen nanofibrils resembling those obtained from PSC gel containing no genipin (Figure 6(a)). We must note that the apparent fibril density in the SEM images became similar by the alcohol dehydration and sublimation process.

Bottom Line: The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points.In specific cases PSC would be preferred over ASC as an injectable gel system.The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation.

View Article: PubMed Central - PubMed

Affiliation: Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan.

ABSTRACT
We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC) and acid-solubilized collagen (ASC) as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0-2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points. In specific cases PSC would be preferred over ASC as an injectable gel system. The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation. The elastic modulus of the 0.5% PSC/genipin gel system could be adjusted in a range of 2.5 to 50 kPa by the PSC and genipin concentrations, suggesting that a PSC/genipin solution is a potential injectable gel system for drug and cell carriers, with mechanical properties matching those of living tissues.

No MeSH data available.