Limits...
The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells.

Fraser ST - ISRN Hematol (2013)

Bottom Line: The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development.Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive.While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.

View Article: PubMed Central - PubMed

Affiliation: Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia.

ABSTRACT
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.

No MeSH data available.


In vitro differentiation of embryonic stem (ES) cells into mesodermal progenitors of the hematovascular system.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814094&req=5

fig2: In vitro differentiation of embryonic stem (ES) cells into mesodermal progenitors of the hematovascular system.

Mentions: Embryonic stem (ES) cells are immortal, undifferentiated cells derived from the inner cell mass of the developing blastocyst. ES cells have two remarkable properties that make them an excellent model for studying developmental processes. Firstly, they can be maintained in culture as undifferentiated, uncommitted stem cells as long as the soluble growth factor LIF (leukemia inhibitory factor) is present in the culture medium. Secondly, once LIF has been removed, ES cells will rapidly begin to differentiate and can give rise to all cells found throughout the body. If injected back into blastocysts, ES cells can contribute to all known tissues. In vitro, ES cells can be induced to differentiate into derivatives of all three germ layers (i.e., endoderm, ectoderm, and mesoderm) [37]. Depending on the culture conditions used, ES cells can be differentiated along the mesodermal lineage and have been recorded to give rise to the main cell types derived from the mesoderm, the blood, vascular and lymphatic endothelial cells, vascular smooth muscle cells, cardiomyocytes, and skeletal muscle [38–43]. The general differentiation pathway of ES cells into mesoderm derivatives is shown in Figure 2. There are numerous advantages of the ES cell differentiation system for modeling embryonic developmental processes. ES cell cultures can be scaled up to obtain larger numbers of rare intermediate and progenitor populations; the addition of soluble inhibitors or activators is straightforward, and the issue of embryonic lethality following mutation of critical genes can be avoided.


The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells.

Fraser ST - ISRN Hematol (2013)

In vitro differentiation of embryonic stem (ES) cells into mesodermal progenitors of the hematovascular system.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814094&req=5

fig2: In vitro differentiation of embryonic stem (ES) cells into mesodermal progenitors of the hematovascular system.
Mentions: Embryonic stem (ES) cells are immortal, undifferentiated cells derived from the inner cell mass of the developing blastocyst. ES cells have two remarkable properties that make them an excellent model for studying developmental processes. Firstly, they can be maintained in culture as undifferentiated, uncommitted stem cells as long as the soluble growth factor LIF (leukemia inhibitory factor) is present in the culture medium. Secondly, once LIF has been removed, ES cells will rapidly begin to differentiate and can give rise to all cells found throughout the body. If injected back into blastocysts, ES cells can contribute to all known tissues. In vitro, ES cells can be induced to differentiate into derivatives of all three germ layers (i.e., endoderm, ectoderm, and mesoderm) [37]. Depending on the culture conditions used, ES cells can be differentiated along the mesodermal lineage and have been recorded to give rise to the main cell types derived from the mesoderm, the blood, vascular and lymphatic endothelial cells, vascular smooth muscle cells, cardiomyocytes, and skeletal muscle [38–43]. The general differentiation pathway of ES cells into mesoderm derivatives is shown in Figure 2. There are numerous advantages of the ES cell differentiation system for modeling embryonic developmental processes. ES cell cultures can be scaled up to obtain larger numbers of rare intermediate and progenitor populations; the addition of soluble inhibitors or activators is straightforward, and the issue of embryonic lethality following mutation of critical genes can be avoided.

Bottom Line: The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development.Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive.While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.

View Article: PubMed Central - PubMed

Affiliation: Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia.

ABSTRACT
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.

No MeSH data available.