Limits...
A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

Li Y, Li W, Ye Q - ScientificWorldJournal (2013)

Bottom Line: A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications.The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR.The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: College of Information and Communications Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China.

ABSTRACT
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

Show MeSH

Related in: MedlinePlus

Comparison of the simulated and measured VSWR of the fabricated antennas.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814091&req=5

fig7: Comparison of the simulated and measured VSWR of the fabricated antennas.

Mentions: To validate the designs of the proposed reconfigurable dual band-notch UWB antenna, antenna-4 with all the switches ON or OFF has been fabricated and tested. To be consistent with the simulation setting of HFSS, the presence of a metal bridge in the fabricated antenna corresponds to the ON state while its absence represents the OFF state. The fabricated antennas are shown in Figure 6, and the comparison of the measured VSWRs with the simulation results is presented in Figure 7, which helps to verify the accuracy of the HFSS simulation. It clearly shows that the proposed antenna-4 does perform as a dual band-notch UWB antenna when all the switches are ON. The two notch bands are as expected at 5.5 GHz and 8 GHz. With all the switches OFF, the proposed antenna functions as a UWB antenna, whose impedance bandwidth is 9.3 GHz, ranging from 2.7 GHz to 12 GHz or even higher. Thus, it can cover the entire UWB band. Hence, the reconfigurable dual band-notch UWB antenna can be realized by controlling the states of the appropriate switches.


A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

Li Y, Li W, Ye Q - ScientificWorldJournal (2013)

Comparison of the simulated and measured VSWR of the fabricated antennas.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814091&req=5

fig7: Comparison of the simulated and measured VSWR of the fabricated antennas.
Mentions: To validate the designs of the proposed reconfigurable dual band-notch UWB antenna, antenna-4 with all the switches ON or OFF has been fabricated and tested. To be consistent with the simulation setting of HFSS, the presence of a metal bridge in the fabricated antenna corresponds to the ON state while its absence represents the OFF state. The fabricated antennas are shown in Figure 6, and the comparison of the measured VSWRs with the simulation results is presented in Figure 7, which helps to verify the accuracy of the HFSS simulation. It clearly shows that the proposed antenna-4 does perform as a dual band-notch UWB antenna when all the switches are ON. The two notch bands are as expected at 5.5 GHz and 8 GHz. With all the switches OFF, the proposed antenna functions as a UWB antenna, whose impedance bandwidth is 9.3 GHz, ranging from 2.7 GHz to 12 GHz or even higher. Thus, it can cover the entire UWB band. Hence, the reconfigurable dual band-notch UWB antenna can be realized by controlling the states of the appropriate switches.

Bottom Line: A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications.The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR.The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: College of Information and Communications Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China.

ABSTRACT
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

Show MeSH
Related in: MedlinePlus