Limits...
A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

Li Y, Li W, Ye Q - ScientificWorldJournal (2013)

Bottom Line: A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications.The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR.The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: College of Information and Communications Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China.

ABSTRACT
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

Show MeSH

Related in: MedlinePlus

Band-notched characteristic of the four antennas while antenna-4 is with all the switches ON.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814091&req=5

fig2: Band-notched characteristic of the four antennas while antenna-4 is with all the switches ON.

Mentions: In this section, the performance of the proposed antenna, including the band-notched characteristic, effects of the key parameters, the reconfigurable characteristic, and the current density distributions, is studied by using HFSS. Figure 2 shows the band-notch characteristic of the four antennas while antenna-4 is with all the switches ON. It can be seen that the antenna without the T-SIR and the PSLR, which is antenna-1, is a UWB antenna with a bandwidth of 9.3 GHz. It covers the entire UWB band. Antenna-2 with only the T-SIR is a UWB antenna with single notch band operating at 3.8–5.9 GHz, which is designed to prevent the potential interferences from C-band (4.4–5 GHz) for super high frequency (SHF) and satellite services and the interferences from IEEE 802.11a WLAN system (5.15–5.825 GHz). Antenna-3 with only the PSLR is a UWB antenna with a notch band operating at 7.7–9.2 GHz, which is used for mitigating the potential interferences from satellite communication systems (7.9–8.4 GHz) and ITU 8 GHz (7.725–8.275 GHz) applications. Antenna-4 with both the T-SIR and the PSLR, when all the switches are ON, is a dual band-notched UWB antenna with the two notch bands at 4–5.9 GHz (lower notch band) and 7.9–8.4 GHz (higher notch band), respectively. In this case, antenna-4 can reduce the potential interferences from the narrow band systems mentioned above, simultaneously. Thus, we can conclude that the lower notch band is achieved by using the T-SIR, while the higher notch band is realized by using the PSLR, and the two notch bands can be designed independently.


A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

Li Y, Li W, Ye Q - ScientificWorldJournal (2013)

Band-notched characteristic of the four antennas while antenna-4 is with all the switches ON.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814091&req=5

fig2: Band-notched characteristic of the four antennas while antenna-4 is with all the switches ON.
Mentions: In this section, the performance of the proposed antenna, including the band-notched characteristic, effects of the key parameters, the reconfigurable characteristic, and the current density distributions, is studied by using HFSS. Figure 2 shows the band-notch characteristic of the four antennas while antenna-4 is with all the switches ON. It can be seen that the antenna without the T-SIR and the PSLR, which is antenna-1, is a UWB antenna with a bandwidth of 9.3 GHz. It covers the entire UWB band. Antenna-2 with only the T-SIR is a UWB antenna with single notch band operating at 3.8–5.9 GHz, which is designed to prevent the potential interferences from C-band (4.4–5 GHz) for super high frequency (SHF) and satellite services and the interferences from IEEE 802.11a WLAN system (5.15–5.825 GHz). Antenna-3 with only the PSLR is a UWB antenna with a notch band operating at 7.7–9.2 GHz, which is used for mitigating the potential interferences from satellite communication systems (7.9–8.4 GHz) and ITU 8 GHz (7.725–8.275 GHz) applications. Antenna-4 with both the T-SIR and the PSLR, when all the switches are ON, is a dual band-notched UWB antenna with the two notch bands at 4–5.9 GHz (lower notch band) and 7.9–8.4 GHz (higher notch band), respectively. In this case, antenna-4 can reduce the potential interferences from the narrow band systems mentioned above, simultaneously. Thus, we can conclude that the lower notch band is achieved by using the T-SIR, while the higher notch band is realized by using the PSLR, and the two notch bands can be designed independently.

Bottom Line: A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications.The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR.The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: College of Information and Communications Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China.

ABSTRACT
A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

Show MeSH
Related in: MedlinePlus