Limits...
Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis.

Eren E, Yilmaz N, Aydin O - Cholesterol (2013)

Bottom Line: HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS.Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction.The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Atatürk Hospital, 07040 Antalya, Turkey.

ABSTRACT
The endothelium is the primary target for biochemical or mechanical injuries caused by the putative risk factors of atherosclerosis. Endothelial dysfunction represents the ultimate link between atherosclerotic risk factors that promote atherosclerosis. HDL-C is thought to exert at least some parts of its antiatherogenic facilities via stimulating endothelial NO production, nearby inhibiting oxidative stress and inflammation. HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS. Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction. The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling. Loss of nitric oxide bioavailability has a pivotal role in endothelial dysfunction preceding the appearance of atherosclerosis. Analyses of HDL-C and Paraoxonase1 would be more important in the diagnosis and treatment of atherosclerosis in the very near future.

No MeSH data available.


Related in: MedlinePlus

Proteins of HDL-C. *: apolipoproteins, **: lipid transfer proteins, ***: enzymes of the HDL-C proteome.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3814057&req=5

fig1: Proteins of HDL-C. *: apolipoproteins, **: lipid transfer proteins, ***: enzymes of the HDL-C proteome.

Mentions: HDL-C constitutes a dynamic polydisperse group of particles which are central to lipid metabolism. The first HDL-associated protein moiety was identified in the late 1960s. By the early 1990s, HDL-C was thought to contain somewhere around fifteen proteins. Currently, up to two hundred individual proteins have been detected in human HDL-C samples. The presence of these proteins fits well into the general dogma of a primary HDL-C function as a lipid transport vehicle [1, 5–11]. HDL-C protein component is largely diverse, comprising structural apolipoproteins, enzymes, cofactors for enzymes, and numerous other proteins (Figure 1). While many HDL-C proteins fall within the general area of several biochemical pathways, numerous other functions are also present. The tremendous functional heterogeneity inherent to HDL-C is driven in large part by its compositional heterogeneity [9]. Many studies indicate that the HDL-C proteome can change in a variety of disease states and these changes are often related to at least in vitro measures of HDL-C function [9–11].


Functionally defective high-density lipoprotein and paraoxonase: a couple for endothelial dysfunction in atherosclerosis.

Eren E, Yilmaz N, Aydin O - Cholesterol (2013)

Proteins of HDL-C. *: apolipoproteins, **: lipid transfer proteins, ***: enzymes of the HDL-C proteome.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3814057&req=5

fig1: Proteins of HDL-C. *: apolipoproteins, **: lipid transfer proteins, ***: enzymes of the HDL-C proteome.
Mentions: HDL-C constitutes a dynamic polydisperse group of particles which are central to lipid metabolism. The first HDL-associated protein moiety was identified in the late 1960s. By the early 1990s, HDL-C was thought to contain somewhere around fifteen proteins. Currently, up to two hundred individual proteins have been detected in human HDL-C samples. The presence of these proteins fits well into the general dogma of a primary HDL-C function as a lipid transport vehicle [1, 5–11]. HDL-C protein component is largely diverse, comprising structural apolipoproteins, enzymes, cofactors for enzymes, and numerous other proteins (Figure 1). While many HDL-C proteins fall within the general area of several biochemical pathways, numerous other functions are also present. The tremendous functional heterogeneity inherent to HDL-C is driven in large part by its compositional heterogeneity [9]. Many studies indicate that the HDL-C proteome can change in a variety of disease states and these changes are often related to at least in vitro measures of HDL-C function [9–11].

Bottom Line: HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS.Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction.The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Atatürk Hospital, 07040 Antalya, Turkey.

ABSTRACT
The endothelium is the primary target for biochemical or mechanical injuries caused by the putative risk factors of atherosclerosis. Endothelial dysfunction represents the ultimate link between atherosclerotic risk factors that promote atherosclerosis. HDL-C is thought to exert at least some parts of its antiatherogenic facilities via stimulating endothelial NO production, nearby inhibiting oxidative stress and inflammation. HDL-C is capable of opposing LDL's inductive effects and avoiding the ox-LDL's inhibition of eNOS. Paraoxonase 1 (PON1) is an HDL-associated enzyme esterase which appears to contribute to the antioxidant and antiatherosclerotic capabilities of HDL-C. "Healthy HDL," namely the particle that contains the active Paraoxonase 1, has the power to suppress the formation of oxidized lipids. "Dysfunctional HDL," on the contrary, has reduced Paraoxonase 1 enzyme activity and not only fails in its mission but also potentially leads to greater formation of oxidized lipids/lipoproteins to cause endothelial dysfunction. The association of HDL-C PON1 and endothelial dysfunction depends largely on the molecules with exact damaging effect on NO synthase coupling. Loss of nitric oxide bioavailability has a pivotal role in endothelial dysfunction preceding the appearance of atherosclerosis. Analyses of HDL-C and Paraoxonase1 would be more important in the diagnosis and treatment of atherosclerosis in the very near future.

No MeSH data available.


Related in: MedlinePlus