Limits...
Design optimization of coronary stent based on finite element models.

Li H, Qiu T, Zhu B, Wu J, Wang X - ScientificWorldJournal (2013)

Bottom Line: An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration.Thrombosis models of three typical shapes are built to test the effectiveness of optimization results.Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.

Show MeSH

Related in: MedlinePlus

Pattern of the stent expansion based on the four FEA models.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3814053&req=5

fig4: Pattern of the stent expansion based on the four FEA models.

Mentions: The pattern of the transient nonuniform stent expansion based on the four FEA models is shown in Figure 4. Based on LPV, LPC, and SMPV model, the radial displacement in the distal region of the stent is larger than the proximal displacement at the second instant shown in Figures 4(a) and 4(c). However, the radial displacement in the distal region of the stent is closed to the proximal displacement since the third instant is shown in Figures 4(a) and 4(c), corresponding to the final phase of the expansion and unloading. These results are compared favorably with those reported in the literature [10, 14, 15] while based on LRD model; the radial displacement in the distal region of the stent is almost equal to the radial displacement in the proximal region of the stent because of the constant displacement loaded on the inner surface of balloon (shown in Figure 4(b)).


Design optimization of coronary stent based on finite element models.

Li H, Qiu T, Zhu B, Wu J, Wang X - ScientificWorldJournal (2013)

Pattern of the stent expansion based on the four FEA models.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3814053&req=5

fig4: Pattern of the stent expansion based on the four FEA models.
Mentions: The pattern of the transient nonuniform stent expansion based on the four FEA models is shown in Figure 4. Based on LPV, LPC, and SMPV model, the radial displacement in the distal region of the stent is larger than the proximal displacement at the second instant shown in Figures 4(a) and 4(c). However, the radial displacement in the distal region of the stent is closed to the proximal displacement since the third instant is shown in Figures 4(a) and 4(c), corresponding to the final phase of the expansion and unloading. These results are compared favorably with those reported in the literature [10, 14, 15] while based on LRD model; the radial displacement in the distal region of the stent is almost equal to the radial displacement in the proximal region of the stent because of the constant displacement loaded on the inner surface of balloon (shown in Figure 4(b)).

Bottom Line: An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration.Thrombosis models of three typical shapes are built to test the effectiveness of optimization results.Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.

Show MeSH
Related in: MedlinePlus