Limits...
Diminished acquired equivalence yet good discrimination performance in older participants.

Robinson J, Owens E - Front Psychol (2013)

Bottom Line: Notice that, e.g., Alice and Charlotte are "equivalent" in liking tennis but disliking hockey.Acquired equivalence is anticipated by a network whose hidden units are shared when inputs (e.g., A and C) signal the same outcome (e.g., +) when accompanied by the same input (t).One interpretation of these results is that there are age-related differences in the mechanisms of configural acquired equivalence.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, The University of Nottingham , Nottingham, UK.

ABSTRACT
We asked younger and older human participants to perform computer-based configural discriminations that were designed to detect acquired equivalence. Both groups solved the discriminations but only the younger participants demonstrated acquired equivalence. The discriminations involved learning the preferences ["like" (+) or "dislike" (-)] for sports [e.g., tennis (t) and hockey (h)] of four fictitious people [e.g., Alice (A), Beth (B), Charlotte (C), and Dorothy (D)]. In one experiment, the discrimination had the form: At+, Bt-, Ct+, Dt-, Ah-, Bh+, Ch-, Dh+. Notice that, e.g., Alice and Charlotte are "equivalent" in liking tennis but disliking hockey. Acquired equivalence was assessed in ancillary components of the discrimination (e.g., by looking at the subsequent rate of "whole" versus "partial" reversal learning). Acquired equivalence is anticipated by a network whose hidden units are shared when inputs (e.g., A and C) signal the same outcome (e.g., +) when accompanied by the same input (t). One interpretation of these results is that there are age-related differences in the mechanisms of configural acquired equivalence.

No MeSH data available.


Example of treatments given to the younger and older participants in Experiment 2. Participants are required to learn whether four fictitious characters, Alice, Beth, Charlotte and Dorothy, like or dislike the sports tennis, hockey bowling, and netball. Unlike Experiment 1, training consisted of the single stage represented here. Two characters like two of the four sports and dislike the other two sports; these patterns of liking and disliking are complemented by the remaining two characters. In the example of a “congruent” treatment in the top panel, two pairs of characters like the same two sports (Alice and Charlotte both like tennis and bowling, and Beth and Dorothy both like hockey and netball) and dislike the same sports (Alice and Charlotte both dislike hockey and netball, and Beth and Dorothy both dislike tennis and bowling).But in the example of an “incongruent” treatment in the bottom panel, no two pairs of characters share patterns of liking and disliking of the sports. For example, although Alice and Beth both like hockey and dislike tennis, Alice likes bowling, whereas Beth dislikes it.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3795348&req=5

Figure 4: Example of treatments given to the younger and older participants in Experiment 2. Participants are required to learn whether four fictitious characters, Alice, Beth, Charlotte and Dorothy, like or dislike the sports tennis, hockey bowling, and netball. Unlike Experiment 1, training consisted of the single stage represented here. Two characters like two of the four sports and dislike the other two sports; these patterns of liking and disliking are complemented by the remaining two characters. In the example of a “congruent” treatment in the top panel, two pairs of characters like the same two sports (Alice and Charlotte both like tennis and bowling, and Beth and Dorothy both like hockey and netball) and dislike the same sports (Alice and Charlotte both dislike hockey and netball, and Beth and Dorothy both dislike tennis and bowling).But in the example of an “incongruent” treatment in the bottom panel, no two pairs of characters share patterns of liking and disliking of the sports. For example, although Alice and Beth both like hockey and dislike tennis, Alice likes bowling, whereas Beth dislikes it.

Mentions: The results of Experiment 1 join those of Honey and Ward-Robinson (2001) and Hodder et al. (2003) in showing an acquired equivalence effect by an improved rate of “whole” reversal learning relative to “part” reversal learning in younger participants. Our new finding is that this difference in whole/part learning rate was absent in older participants. Before considering fully the implications of this finding, we sought to replicate it using similar logic to that of Experiment 1. For Experiment 1 to reveal acquired equivalence, it is necessary for the benefit of acquired equivalence to more than offset the cost of relearning new character-sport relationships. In Experiment 2, which is summarized in Figure 4, we followed Honey and Ward-Robinson (2001) in the use of a design that avoids this compromise. Older and younger participants were required to learn the four characters like/dislike of four sports. For the Congruent treatment, each of the characters' like/dislike of the the four sports was matched with one other character. For the Incongruent treatment, no one character's sport like/dislike was matched with any other character. Acquired equivalence could be demonstrated by the finding that the discrimination was mastered more rapidly in the congruent than the incongruent condition. Again, we asked whether the extent of acquired equivalence would be different in the two age groups.


Diminished acquired equivalence yet good discrimination performance in older participants.

Robinson J, Owens E - Front Psychol (2013)

Example of treatments given to the younger and older participants in Experiment 2. Participants are required to learn whether four fictitious characters, Alice, Beth, Charlotte and Dorothy, like or dislike the sports tennis, hockey bowling, and netball. Unlike Experiment 1, training consisted of the single stage represented here. Two characters like two of the four sports and dislike the other two sports; these patterns of liking and disliking are complemented by the remaining two characters. In the example of a “congruent” treatment in the top panel, two pairs of characters like the same two sports (Alice and Charlotte both like tennis and bowling, and Beth and Dorothy both like hockey and netball) and dislike the same sports (Alice and Charlotte both dislike hockey and netball, and Beth and Dorothy both dislike tennis and bowling).But in the example of an “incongruent” treatment in the bottom panel, no two pairs of characters share patterns of liking and disliking of the sports. For example, although Alice and Beth both like hockey and dislike tennis, Alice likes bowling, whereas Beth dislikes it.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3795348&req=5

Figure 4: Example of treatments given to the younger and older participants in Experiment 2. Participants are required to learn whether four fictitious characters, Alice, Beth, Charlotte and Dorothy, like or dislike the sports tennis, hockey bowling, and netball. Unlike Experiment 1, training consisted of the single stage represented here. Two characters like two of the four sports and dislike the other two sports; these patterns of liking and disliking are complemented by the remaining two characters. In the example of a “congruent” treatment in the top panel, two pairs of characters like the same two sports (Alice and Charlotte both like tennis and bowling, and Beth and Dorothy both like hockey and netball) and dislike the same sports (Alice and Charlotte both dislike hockey and netball, and Beth and Dorothy both dislike tennis and bowling).But in the example of an “incongruent” treatment in the bottom panel, no two pairs of characters share patterns of liking and disliking of the sports. For example, although Alice and Beth both like hockey and dislike tennis, Alice likes bowling, whereas Beth dislikes it.
Mentions: The results of Experiment 1 join those of Honey and Ward-Robinson (2001) and Hodder et al. (2003) in showing an acquired equivalence effect by an improved rate of “whole” reversal learning relative to “part” reversal learning in younger participants. Our new finding is that this difference in whole/part learning rate was absent in older participants. Before considering fully the implications of this finding, we sought to replicate it using similar logic to that of Experiment 1. For Experiment 1 to reveal acquired equivalence, it is necessary for the benefit of acquired equivalence to more than offset the cost of relearning new character-sport relationships. In Experiment 2, which is summarized in Figure 4, we followed Honey and Ward-Robinson (2001) in the use of a design that avoids this compromise. Older and younger participants were required to learn the four characters like/dislike of four sports. For the Congruent treatment, each of the characters' like/dislike of the the four sports was matched with one other character. For the Incongruent treatment, no one character's sport like/dislike was matched with any other character. Acquired equivalence could be demonstrated by the finding that the discrimination was mastered more rapidly in the congruent than the incongruent condition. Again, we asked whether the extent of acquired equivalence would be different in the two age groups.

Bottom Line: Notice that, e.g., Alice and Charlotte are "equivalent" in liking tennis but disliking hockey.Acquired equivalence is anticipated by a network whose hidden units are shared when inputs (e.g., A and C) signal the same outcome (e.g., +) when accompanied by the same input (t).One interpretation of these results is that there are age-related differences in the mechanisms of configural acquired equivalence.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, The University of Nottingham , Nottingham, UK.

ABSTRACT
We asked younger and older human participants to perform computer-based configural discriminations that were designed to detect acquired equivalence. Both groups solved the discriminations but only the younger participants demonstrated acquired equivalence. The discriminations involved learning the preferences ["like" (+) or "dislike" (-)] for sports [e.g., tennis (t) and hockey (h)] of four fictitious people [e.g., Alice (A), Beth (B), Charlotte (C), and Dorothy (D)]. In one experiment, the discrimination had the form: At+, Bt-, Ct+, Dt-, Ah-, Bh+, Ch-, Dh+. Notice that, e.g., Alice and Charlotte are "equivalent" in liking tennis but disliking hockey. Acquired equivalence was assessed in ancillary components of the discrimination (e.g., by looking at the subsequent rate of "whole" versus "partial" reversal learning). Acquired equivalence is anticipated by a network whose hidden units are shared when inputs (e.g., A and C) signal the same outcome (e.g., +) when accompanied by the same input (t). One interpretation of these results is that there are age-related differences in the mechanisms of configural acquired equivalence.

No MeSH data available.