Limits...
Effects of cadmium on lipid storage and metabolism in the freshwater crab Sinopotamon henanense.

Yang J, Liu D, Jing W, Dahms HU, Wang L - PLoS ONE (2013)

Bottom Line: Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development.With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI).However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, People's Republic of China.

ABSTRACT
Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time. Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a lower lipid level.

Show MeSH

Related in: MedlinePlus

Effect of Cd on lipid digestion, lipid transport and lipid synthesis of Sinopotamon henanense.Activity of pancreatic lipase (PL, a), lipoprotein lipase (LPL, b) fatty acid synthase (FAS) in the hepatopancreas (c) and ovary (d) and acyl-CoA carboxylase (ACC) activity in the hepatopancreas (e) and ovary (f) of control and exposed crabs after 10, 15 and 20 days of experimentation. Comparison between the control and treatment groups is notified as * p < 0.05.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3795049&req=5

pone-0077569-g003: Effect of Cd on lipid digestion, lipid transport and lipid synthesis of Sinopotamon henanense.Activity of pancreatic lipase (PL, a), lipoprotein lipase (LPL, b) fatty acid synthase (FAS) in the hepatopancreas (c) and ovary (d) and acyl-CoA carboxylase (ACC) activity in the hepatopancreas (e) and ovary (f) of control and exposed crabs after 10, 15 and 20 days of experimentation. Comparison between the control and treatment groups is notified as * p < 0.05.

Mentions: The activity of LPL which plays a key role in lipid transport was lower than the control, and showed a time- and dose-dependent pattern (Figure 3b). Significant differences were also observed following the exposure to 2.9, 5.8 mg/l Cd at 10-days and all Cd concentrations at 15 and 20-days. As seen in Figure 3a, the activity of PL at 10-day exposure significantly increased (p < 0.05). However, the PL showed a significant reduction at 15- and 20-days exposed crabs compared to the control. The activity of FAS and ACC involved in lipid synthesis at 10-day exposed crabs was higher than the controls (Figure 3b - 3f). With time both enzymes showed a lower activity, and a significant reduction of ACC activity was observed at higher concentrations at 20-days.


Effects of cadmium on lipid storage and metabolism in the freshwater crab Sinopotamon henanense.

Yang J, Liu D, Jing W, Dahms HU, Wang L - PLoS ONE (2013)

Effect of Cd on lipid digestion, lipid transport and lipid synthesis of Sinopotamon henanense.Activity of pancreatic lipase (PL, a), lipoprotein lipase (LPL, b) fatty acid synthase (FAS) in the hepatopancreas (c) and ovary (d) and acyl-CoA carboxylase (ACC) activity in the hepatopancreas (e) and ovary (f) of control and exposed crabs after 10, 15 and 20 days of experimentation. Comparison between the control and treatment groups is notified as * p < 0.05.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3795049&req=5

pone-0077569-g003: Effect of Cd on lipid digestion, lipid transport and lipid synthesis of Sinopotamon henanense.Activity of pancreatic lipase (PL, a), lipoprotein lipase (LPL, b) fatty acid synthase (FAS) in the hepatopancreas (c) and ovary (d) and acyl-CoA carboxylase (ACC) activity in the hepatopancreas (e) and ovary (f) of control and exposed crabs after 10, 15 and 20 days of experimentation. Comparison between the control and treatment groups is notified as * p < 0.05.
Mentions: The activity of LPL which plays a key role in lipid transport was lower than the control, and showed a time- and dose-dependent pattern (Figure 3b). Significant differences were also observed following the exposure to 2.9, 5.8 mg/l Cd at 10-days and all Cd concentrations at 15 and 20-days. As seen in Figure 3a, the activity of PL at 10-day exposure significantly increased (p < 0.05). However, the PL showed a significant reduction at 15- and 20-days exposed crabs compared to the control. The activity of FAS and ACC involved in lipid synthesis at 10-day exposed crabs was higher than the controls (Figure 3b - 3f). With time both enzymes showed a lower activity, and a significant reduction of ACC activity was observed at higher concentrations at 20-days.

Bottom Line: Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development.With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI).However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, People's Republic of China.

ABSTRACT
Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time. Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a lower lipid level.

Show MeSH
Related in: MedlinePlus