Limits...
Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH

Related in: MedlinePlus

Example of simulation outputs for wheat obtained for three cropping systems (intensive, integrated and organic) in a given production situation (screenshot of the DEXi software).Three pests in interaction were taken into account in these simulations: eyespot, sharp eyespot and brown rust.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g005: Example of simulation outputs for wheat obtained for three cropping systems (intensive, integrated and organic) in a given production situation (screenshot of the DEXi software).Three pests in interaction were taken into account in these simulations: eyespot, sharp eyespot and brown rust.

Mentions: The use of the model presented in the first sub-section of the “results” section is exemplified for three contrasting cropping practices in a given production situation (Figure 5). The three cropping practices considered were: intensive, integrated and organic systems. The intensive system is a wheat monoculture with a high level of inputs and a high-yielding cultivar susceptible to diseases, aiming at a high yield level. The integrated system is characterised by a limited use of inputs, with a lower-yielding cultivar than the former system, but less susceptible to diseases, a short wheat rotation, and a satisfactory yield level. The organic system is characterised by low inputs, with a disease-resistant cultivar with a limited yield, associated with a long wheat rotation and appropriate crop management. The three systems were tested in the same production situation, with a weather scenario favourable to the development of the considered diseases.


Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Example of simulation outputs for wheat obtained for three cropping systems (intensive, integrated and organic) in a given production situation (screenshot of the DEXi software).Three pests in interaction were taken into account in these simulations: eyespot, sharp eyespot and brown rust.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g005: Example of simulation outputs for wheat obtained for three cropping systems (intensive, integrated and organic) in a given production situation (screenshot of the DEXi software).Three pests in interaction were taken into account in these simulations: eyespot, sharp eyespot and brown rust.
Mentions: The use of the model presented in the first sub-section of the “results” section is exemplified for three contrasting cropping practices in a given production situation (Figure 5). The three cropping practices considered were: intensive, integrated and organic systems. The intensive system is a wheat monoculture with a high level of inputs and a high-yielding cultivar susceptible to diseases, aiming at a high yield level. The integrated system is characterised by a limited use of inputs, with a lower-yielding cultivar than the former system, but less susceptible to diseases, a short wheat rotation, and a satisfactory yield level. The organic system is characterised by low inputs, with a disease-resistant cultivar with a limited yield, associated with a long wheat rotation and appropriate crop management. The three systems were tested in the same production situation, with a weather scenario favourable to the development of the considered diseases.

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH
Related in: MedlinePlus