Limits...
Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH

Related in: MedlinePlus

Typology of injuries caused by multiple pests on a crop for given Cropping Practices in a given Production Situation using nine generic Injury Profiles (IP1–IP9).These Injury Profiles are determined by the final levels of the injuries caused by slightly and highly/moderately endocyclic pests (plant pathogens, weeds and animal pests). They can be used to perform cross-cutting analyses for a wide range of agricultural productions.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g004: Typology of injuries caused by multiple pests on a crop for given Cropping Practices in a given Production Situation using nine generic Injury Profiles (IP1–IP9).These Injury Profiles are determined by the final levels of the injuries caused by slightly and highly/moderately endocyclic pests (plant pathogens, weeds and animal pests). They can be used to perform cross-cutting analyses for a wide range of agricultural productions.

Mentions: Two aggregating tables were designed to summarise the distribution of final injury levels of single pests using two aggregated variables: the overall final severity of i) highly/moderately and ii) slightly endocyclic pests (Table 4). Considering three levels of final injury (low, medium, high) for each of the two endocyclism groups, a range of nine possible generic injury profiles was proposed (Figure 4) for any agricultural productions worldwide (i.e. major crops; vegetables; vineyard; orchards; horticulture; industrial crops, aromatic and medicinal plants; grassland; in field or in Controlled Environment Agriculture). For production situations where injury profile haves high final injury levels of highly endocyclic pests (IP7, IP8; IP9; Table 5), a better management of primary inoculum production at the field level should be undertaken (e.g. interaction between by crop sequence and tillage; stubble management, volunteer management, stale seedbeds and sanitation measures for perennial crops). For production situations with injury profiles with high levels of slightly endocyclic pests (IP3, IP6; IP9; Table 5), special attention should be paid to i) the management of inoculum production at the territory level (e.g. spatial distribution of cropping systems, management of primary inoculum production in the neighbouring fields or waste piles, management of interstitial spaces to promote beneficials); ii) escape strategies (sowing date adaptation); iii) mitigation through the crop status (e.g. cultivar choice, sowing rate, nitrogen fertilisation, irrigation).


Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Typology of injuries caused by multiple pests on a crop for given Cropping Practices in a given Production Situation using nine generic Injury Profiles (IP1–IP9).These Injury Profiles are determined by the final levels of the injuries caused by slightly and highly/moderately endocyclic pests (plant pathogens, weeds and animal pests). They can be used to perform cross-cutting analyses for a wide range of agricultural productions.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g004: Typology of injuries caused by multiple pests on a crop for given Cropping Practices in a given Production Situation using nine generic Injury Profiles (IP1–IP9).These Injury Profiles are determined by the final levels of the injuries caused by slightly and highly/moderately endocyclic pests (plant pathogens, weeds and animal pests). They can be used to perform cross-cutting analyses for a wide range of agricultural productions.
Mentions: Two aggregating tables were designed to summarise the distribution of final injury levels of single pests using two aggregated variables: the overall final severity of i) highly/moderately and ii) slightly endocyclic pests (Table 4). Considering three levels of final injury (low, medium, high) for each of the two endocyclism groups, a range of nine possible generic injury profiles was proposed (Figure 4) for any agricultural productions worldwide (i.e. major crops; vegetables; vineyard; orchards; horticulture; industrial crops, aromatic and medicinal plants; grassland; in field or in Controlled Environment Agriculture). For production situations where injury profile haves high final injury levels of highly endocyclic pests (IP7, IP8; IP9; Table 5), a better management of primary inoculum production at the field level should be undertaken (e.g. interaction between by crop sequence and tillage; stubble management, volunteer management, stale seedbeds and sanitation measures for perennial crops). For production situations with injury profiles with high levels of slightly endocyclic pests (IP3, IP6; IP9; Table 5), special attention should be paid to i) the management of inoculum production at the territory level (e.g. spatial distribution of cropping systems, management of primary inoculum production in the neighbouring fields or waste piles, management of interstitial spaces to promote beneficials); ii) escape strategies (sowing date adaptation); iii) mitigation through the crop status (e.g. cultivar choice, sowing rate, nitrogen fertilisation, irrigation).

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH
Related in: MedlinePlus