Limits...
Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH

Related in: MedlinePlus

Schematic representation of an agroecosystem and its drivers.In green: components defining the Production Situation (except for the crop). The injury profile is the output variable of IPSIM, whereas its input variables are included within the three following components: cropping practices, field environment, and physical, chemical and biological (crop, pests, beneficials and harmless living organisms) components of the field. *Not taken into account in IPSIM.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g001: Schematic representation of an agroecosystem and its drivers.In green: components defining the Production Situation (except for the crop). The injury profile is the output variable of IPSIM, whereas its input variables are included within the three following components: cropping practices, field environment, and physical, chemical and biological (crop, pests, beneficials and harmless living organisms) components of the field. *Not taken into account in IPSIM.

Mentions: Figure 1 is a schematic representation of an agroecosystem. This figure is the conceptual basis of IPSIM, although its scope is broader than the system directly addressed by IPSIM. According to the farmer’s goals, his farm features, his perception of the environment and of the socio-economic context, as well as his knowledge and cognition, he designs cropping systems that will achieve social, economic and environmental performances, as a function of the production situation. These performances will be highly dependent on the injury profile encountered. The term “cropping system” refers here to “a set of management procedures applied to a given, uniformly treated area, which may be a field, part of a field or a group of fields” [23]. This covers many technical operations, for instance, the choice of the crop sequence, cover cropping, cultivar, tillage practices, date and density of sowing, rate of fertilisation and chemical pest control. The term “system” is used here because these technical choices are inter-dependent [24].


Injury Profile SIMulator, a qualitative aggregative modelling framework to predict crop injury profile as a function of cropping practices, and the abiotic and biotic environment. I. Conceptual bases.

Aubertot JN, Robin MH - PLoS ONE (2013)

Schematic representation of an agroecosystem and its drivers.In green: components defining the Production Situation (except for the crop). The injury profile is the output variable of IPSIM, whereas its input variables are included within the three following components: cropping practices, field environment, and physical, chemical and biological (crop, pests, beneficials and harmless living organisms) components of the field. *Not taken into account in IPSIM.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3760918&req=5

pone-0073202-g001: Schematic representation of an agroecosystem and its drivers.In green: components defining the Production Situation (except for the crop). The injury profile is the output variable of IPSIM, whereas its input variables are included within the three following components: cropping practices, field environment, and physical, chemical and biological (crop, pests, beneficials and harmless living organisms) components of the field. *Not taken into account in IPSIM.
Mentions: Figure 1 is a schematic representation of an agroecosystem. This figure is the conceptual basis of IPSIM, although its scope is broader than the system directly addressed by IPSIM. According to the farmer’s goals, his farm features, his perception of the environment and of the socio-economic context, as well as his knowledge and cognition, he designs cropping systems that will achieve social, economic and environmental performances, as a function of the production situation. These performances will be highly dependent on the injury profile encountered. The term “cropping system” refers here to “a set of management procedures applied to a given, uniformly treated area, which may be a field, part of a field or a group of fields” [23]. This covers many technical operations, for instance, the choice of the crop sequence, cover cropping, cultivar, tillage practices, date and density of sowing, rate of fertilisation and chemical pest control. The term “system” is used here because these technical choices are inter-dependent [24].

Bottom Line: Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment.In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems.In addition, IPSIM could also be used to help make diagnoses on commercial fields.

View Article: PubMed Central - PubMed

Affiliation: Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France ; Université Toulouse, Institut National Polytechnique de Toulouse, Unité Mixte de Recherche 1248 Agrosystèmes et Agricultures, Gestion des Ressources, Innovations et Ruralités, Castanet-Tolosan, France.

ABSTRACT
The limitation of damage caused by pests (plant pathogens, weeds, and animal pests) in any agricultural crop requires integrated management strategies. Although significant efforts have been made to i) develop, and to a lesser extent ii) combine genetic, biological, cultural, physical and chemical control methods in Integrated Pest Management (IPM) strategies (vertical integration), there is a need for tools to help manage Injury Profiles (horizontal integration). Farmers design cropping systems according to their goals, knowledge, cognition and perception of socio-economic and technological drivers as well as their physical, biological, and chemical environment. In return, a given cropping system, in a given production situation will exhibit a unique injury profile, defined as a dynamic vector of the main injuries affecting the crop. This simple description of agroecosystems has been used to develop IPSIM (Injury Profile SIMulator), a modelling framework to predict injury profiles as a function of cropping practices, abiotic and biotic environment. Due to the tremendous complexity of agroecosystems, a simple holistic aggregative approach was chosen instead of attempting to couple detailed models. This paper describes the conceptual bases of IPSIM, an aggregative hierarchical framework and a method to help specify IPSIM for a given crop. A companion paper presents a proof of concept of the proposed approach for a single disease of a major crop (eyespot on wheat). In the future, IPSIM could be used as a tool to help design ex-ante IPM strategies at the field scale if coupled with a damage sub-model, and a multicriteria sub-model that assesses the social, environmental, and economic performances of simulated agroecosystems. In addition, IPSIM could also be used to help make diagnoses on commercial fields. It is important to point out that the presented concepts are not crop- or pest-specific and that IPSIM can be used on any crop.

Show MeSH
Related in: MedlinePlus