Limits...
Associative account of self-cognition: extended forward model and multi-layer structure.

Sugiura M - Front Hum Neurosci (2013)

Bottom Line: The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices.Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error.In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

View Article: PubMed Central - PubMed

Affiliation: Institute of Development, Aging and Cancer, Tohoku University , Sendai , Japan ; International Research Institute of Disaster Science, Tohoku University , Sendai , Japan.

ABSTRACT
The neural correlates of "self" identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body-ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social-values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one's behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

No MeSH data available.


Concept of internal schema. Repeated experience of output and feedback input (A) results in development of internal schema, which is an association between the neural-representation of an output plan and that of feedback input (B); the schema enables forward prediction, which underlies the sense of self in any category. The schema is not exclusively dedicated to self-cognition but is used as an inverse model to plan output to obtain intended feedback input (C). A different internal schema underlies each category of self: the sensorimotor schema associates motor plan with sensory-feedback to develop the physical self (D), the interpersonal schema associates one’s own action plan with feedback on the social responses by others to develop the interpersonal self (E), and the social-value schema associates one’s behavioral plan with consequential social evaluation to represents the self as a collection of context-dependent social-values (F).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3757323&req=5

Figure 4: Concept of internal schema. Repeated experience of output and feedback input (A) results in development of internal schema, which is an association between the neural-representation of an output plan and that of feedback input (B); the schema enables forward prediction, which underlies the sense of self in any category. The schema is not exclusively dedicated to self-cognition but is used as an inverse model to plan output to obtain intended feedback input (C). A different internal schema underlies each category of self: the sensorimotor schema associates motor plan with sensory-feedback to develop the physical self (D), the interpersonal schema associates one’s own action plan with feedback on the social responses by others to develop the interpersonal self (E), and the social-value schema associates one’s behavioral plan with consequential social evaluation to represents the self as a collection of context-dependent social-values (F).

Mentions: Here, a novel attempt will be made to adapt the forward prediction model to the interpersonal and social selves with the intention of explaining all categories of self within the framework of associative learning. A critical component of this adaptation is the internal schema that denotes the association between the neural-representation of the output plan and the feedback input (Figures 4A,B); this schema is assumed to exist for each target of the output and is modified depending on context. In this view, the self may be defined as a label for the capability of forward prediction (Figure 4B) in any system that has such characteristics. Neuroimaging findings appear to be explained by top-down and bottom-up attention to the schema that is typically driven by task requirements and prediction error, respectively.


Associative account of self-cognition: extended forward model and multi-layer structure.

Sugiura M - Front Hum Neurosci (2013)

Concept of internal schema. Repeated experience of output and feedback input (A) results in development of internal schema, which is an association between the neural-representation of an output plan and that of feedback input (B); the schema enables forward prediction, which underlies the sense of self in any category. The schema is not exclusively dedicated to self-cognition but is used as an inverse model to plan output to obtain intended feedback input (C). A different internal schema underlies each category of self: the sensorimotor schema associates motor plan with sensory-feedback to develop the physical self (D), the interpersonal schema associates one’s own action plan with feedback on the social responses by others to develop the interpersonal self (E), and the social-value schema associates one’s behavioral plan with consequential social evaluation to represents the self as a collection of context-dependent social-values (F).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3757323&req=5

Figure 4: Concept of internal schema. Repeated experience of output and feedback input (A) results in development of internal schema, which is an association between the neural-representation of an output plan and that of feedback input (B); the schema enables forward prediction, which underlies the sense of self in any category. The schema is not exclusively dedicated to self-cognition but is used as an inverse model to plan output to obtain intended feedback input (C). A different internal schema underlies each category of self: the sensorimotor schema associates motor plan with sensory-feedback to develop the physical self (D), the interpersonal schema associates one’s own action plan with feedback on the social responses by others to develop the interpersonal self (E), and the social-value schema associates one’s behavioral plan with consequential social evaluation to represents the self as a collection of context-dependent social-values (F).
Mentions: Here, a novel attempt will be made to adapt the forward prediction model to the interpersonal and social selves with the intention of explaining all categories of self within the framework of associative learning. A critical component of this adaptation is the internal schema that denotes the association between the neural-representation of the output plan and the feedback input (Figures 4A,B); this schema is assumed to exist for each target of the output and is modified depending on context. In this view, the self may be defined as a label for the capability of forward prediction (Figure 4B) in any system that has such characteristics. Neuroimaging findings appear to be explained by top-down and bottom-up attention to the schema that is typically driven by task requirements and prediction error, respectively.

Bottom Line: The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices.Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error.In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

View Article: PubMed Central - PubMed

Affiliation: Institute of Development, Aging and Cancer, Tohoku University , Sendai , Japan ; International Research Institute of Disaster Science, Tohoku University , Sendai , Japan.

ABSTRACT
The neural correlates of "self" identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body-ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social-values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one's behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self.

No MeSH data available.