Limits...
Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

Vesapogu JM, Peddakotla S, Kuppa SR - Springerplus (2013)

Bottom Line: An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented.To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller.The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Electrical Engineering, JNTUA, Anantapur, AP India.

ABSTRACT
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

No MeSH data available.


Related in: MedlinePlus

FFT analysis representing order of voltage harmonics at MI = 0.755.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3757154&req=5

Fig4: FFT analysis representing order of voltage harmonics at MI = 0.755.

Mentions: Random initial guess for five switching angles are in between 0° to 90°. Among five switching angles which are computed, one is required to produce fundamental output voltage and other four is used to eliminate lower order harmonics like 5th, 7th, 11th and 13th. The simulation results obtained by implementing above algorithm are presented in Figures 3 and 4 and Table 1 respectively.Figure 3


Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

Vesapogu JM, Peddakotla S, Kuppa SR - Springerplus (2013)

FFT analysis representing order of voltage harmonics at MI = 0.755.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3757154&req=5

Fig4: FFT analysis representing order of voltage harmonics at MI = 0.755.
Mentions: Random initial guess for five switching angles are in between 0° to 90°. Among five switching angles which are computed, one is required to produce fundamental output voltage and other four is used to eliminate lower order harmonics like 5th, 7th, 11th and 13th. The simulation results obtained by implementing above algorithm are presented in Figures 3 and 4 and Table 1 respectively.Figure 3

Bottom Line: An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented.To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller.The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Electrical Engineering, JNTUA, Anantapur, AP India.

ABSTRACT
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

No MeSH data available.


Related in: MedlinePlus