Limits...
Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

Vesapogu JM, Peddakotla S, Kuppa SR - Springerplus (2013)

Bottom Line: An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented.To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller.The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Electrical Engineering, JNTUA, Anantapur, AP India.

ABSTRACT
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

No MeSH data available.


Related in: MedlinePlus

Experimental line to line output voltage waveform of three phase CHB 11-level inverter.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3757154&req=5

Fig14: Experimental line to line output voltage waveform of three phase CHB 11-level inverter.

Mentions: The developed MPSO algorithm is run at various MI from 0 to 1.0 and computed results are presented in Figures 13, 14, 15, 16 and Table 4. The comparative analysis of %THD at various MI from 0 to 1.0 of simulation and experimental approach are listed in Table 4. Figures 13 and 14 represents the experimental output phase which contains eleven steps and line to line voltages of chosen inverter.Figure 13


Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

Vesapogu JM, Peddakotla S, Kuppa SR - Springerplus (2013)

Experimental line to line output voltage waveform of three phase CHB 11-level inverter.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3757154&req=5

Fig14: Experimental line to line output voltage waveform of three phase CHB 11-level inverter.
Mentions: The developed MPSO algorithm is run at various MI from 0 to 1.0 and computed results are presented in Figures 13, 14, 15, 16 and Table 4. The comparative analysis of %THD at various MI from 0 to 1.0 of simulation and experimental approach are listed in Table 4. Figures 13 and 14 represents the experimental output phase which contains eleven steps and line to line voltages of chosen inverter.Figure 13

Bottom Line: An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented.To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller.The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Electrical Engineering, JNTUA, Anantapur, AP India.

ABSTRACT
With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

No MeSH data available.


Related in: MedlinePlus