Limits...
Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome.

Miller KA, Ah-Cann CJ, Welfare MF, Tan TY, Pope K, Caruana G, Freckmann ML, Savarirayan R, Bertram JF, Dobbie MS, Bateman JF, Farlie PG - PLoS Genet. (2013)

Bottom Line: The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia.A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved.This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.

View Article: PubMed Central - PubMed

Affiliation: Murdoch Childrens Research Institute, Parkville, Victoria, Australia.

ABSTRACT
Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.

Show MeSH

Related in: MedlinePlus

Epithelial cellular architecture and levels of Ift140 are altered in Ift140cauli/caul mutants.Scanning electron micrographs and immunohistochemistry of epithelia from E10.5 Ift140+/+ (A and C) and Ift140cauli/cauli (B and D) limb buds. The rigid cellular architecture seen in wildtype limbs is highly disrupted in the mutant, as evidenced by the lack of cilia (compare arrows in A), the presence of thick, disorganised cell junctions (arrows in D) and the more diffuse E-cadherin staining in the mutant (D). Overlay of E-cad (green) and phalloidin (red) in Ift140+/+ (C) and Ift140cauli/cauli (D) epithelium. Cilia counts identify a significant decrease in cilia (***p = 2.05×10−7) in limb buds of Ift140cauli/cauli when compared to Ift140+/+ controls (E). Ift140 can be detected at the base and tip of wildtype limb bud cilia (F) but it undetectable in the majority of mutant cilia (G). Western blot analysis shows a reduction of Ift140 protein levels in Ift140cauli/cauli tissue when compared to control and heterozygous samples (H), and a significant reduction of Ift140 transcript levels (***p = 0.0026) in Ift140cauli/cauli mutant embryos (I). Embryos harbouring a homozygous Ift140  allele show a complete lack of Ift140 protein by western blot (J) and exhibit identical phenotypes to those identified in Ift140cauli/cauli embryos (K,L), including exencephaly (white arrow), open mouth (white arrowhead) and an expanded hindlimb field (asterisk). Scale bar; 2 µM (A and B), 30 µM (C and D).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3757063&req=5

pgen-1003746-g005: Epithelial cellular architecture and levels of Ift140 are altered in Ift140cauli/caul mutants.Scanning electron micrographs and immunohistochemistry of epithelia from E10.5 Ift140+/+ (A and C) and Ift140cauli/cauli (B and D) limb buds. The rigid cellular architecture seen in wildtype limbs is highly disrupted in the mutant, as evidenced by the lack of cilia (compare arrows in A), the presence of thick, disorganised cell junctions (arrows in D) and the more diffuse E-cadherin staining in the mutant (D). Overlay of E-cad (green) and phalloidin (red) in Ift140+/+ (C) and Ift140cauli/cauli (D) epithelium. Cilia counts identify a significant decrease in cilia (***p = 2.05×10−7) in limb buds of Ift140cauli/cauli when compared to Ift140+/+ controls (E). Ift140 can be detected at the base and tip of wildtype limb bud cilia (F) but it undetectable in the majority of mutant cilia (G). Western blot analysis shows a reduction of Ift140 protein levels in Ift140cauli/cauli tissue when compared to control and heterozygous samples (H), and a significant reduction of Ift140 transcript levels (***p = 0.0026) in Ift140cauli/cauli mutant embryos (I). Embryos harbouring a homozygous Ift140 allele show a complete lack of Ift140 protein by western blot (J) and exhibit identical phenotypes to those identified in Ift140cauli/cauli embryos (K,L), including exencephaly (white arrow), open mouth (white arrowhead) and an expanded hindlimb field (asterisk). Scale bar; 2 µM (A and B), 30 µM (C and D).

Mentions: Scanning electron microscopy of E10.5 Ift140+/+ control and Ift140cauli/cauli mutant limb buds identified a defect in the epithelial cellular architecture (Figures 5A and B). In Ift140+/+ control limb buds, epidermal ectodermal cells have distinct, clearly defined cellular borders (Figure 5A). In contrast, individual cells in Ift140cauli/cauli mutants have poorly defined cellular borders and individual cells are difficult to identify from surface topology (Figure 5B). In addition, while the primary cilia are easily identified in >90% of wildtype cells, <20% of Ift140cauli/cauli mutant epithelial cells harbour an identifiable cilium in SEM images (Figures 5A, B, E).


Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome.

Miller KA, Ah-Cann CJ, Welfare MF, Tan TY, Pope K, Caruana G, Freckmann ML, Savarirayan R, Bertram JF, Dobbie MS, Bateman JF, Farlie PG - PLoS Genet. (2013)

Epithelial cellular architecture and levels of Ift140 are altered in Ift140cauli/caul mutants.Scanning electron micrographs and immunohistochemistry of epithelia from E10.5 Ift140+/+ (A and C) and Ift140cauli/cauli (B and D) limb buds. The rigid cellular architecture seen in wildtype limbs is highly disrupted in the mutant, as evidenced by the lack of cilia (compare arrows in A), the presence of thick, disorganised cell junctions (arrows in D) and the more diffuse E-cadherin staining in the mutant (D). Overlay of E-cad (green) and phalloidin (red) in Ift140+/+ (C) and Ift140cauli/cauli (D) epithelium. Cilia counts identify a significant decrease in cilia (***p = 2.05×10−7) in limb buds of Ift140cauli/cauli when compared to Ift140+/+ controls (E). Ift140 can be detected at the base and tip of wildtype limb bud cilia (F) but it undetectable in the majority of mutant cilia (G). Western blot analysis shows a reduction of Ift140 protein levels in Ift140cauli/cauli tissue when compared to control and heterozygous samples (H), and a significant reduction of Ift140 transcript levels (***p = 0.0026) in Ift140cauli/cauli mutant embryos (I). Embryos harbouring a homozygous Ift140  allele show a complete lack of Ift140 protein by western blot (J) and exhibit identical phenotypes to those identified in Ift140cauli/cauli embryos (K,L), including exencephaly (white arrow), open mouth (white arrowhead) and an expanded hindlimb field (asterisk). Scale bar; 2 µM (A and B), 30 µM (C and D).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3757063&req=5

pgen-1003746-g005: Epithelial cellular architecture and levels of Ift140 are altered in Ift140cauli/caul mutants.Scanning electron micrographs and immunohistochemistry of epithelia from E10.5 Ift140+/+ (A and C) and Ift140cauli/cauli (B and D) limb buds. The rigid cellular architecture seen in wildtype limbs is highly disrupted in the mutant, as evidenced by the lack of cilia (compare arrows in A), the presence of thick, disorganised cell junctions (arrows in D) and the more diffuse E-cadherin staining in the mutant (D). Overlay of E-cad (green) and phalloidin (red) in Ift140+/+ (C) and Ift140cauli/cauli (D) epithelium. Cilia counts identify a significant decrease in cilia (***p = 2.05×10−7) in limb buds of Ift140cauli/cauli when compared to Ift140+/+ controls (E). Ift140 can be detected at the base and tip of wildtype limb bud cilia (F) but it undetectable in the majority of mutant cilia (G). Western blot analysis shows a reduction of Ift140 protein levels in Ift140cauli/cauli tissue when compared to control and heterozygous samples (H), and a significant reduction of Ift140 transcript levels (***p = 0.0026) in Ift140cauli/cauli mutant embryos (I). Embryos harbouring a homozygous Ift140 allele show a complete lack of Ift140 protein by western blot (J) and exhibit identical phenotypes to those identified in Ift140cauli/cauli embryos (K,L), including exencephaly (white arrow), open mouth (white arrowhead) and an expanded hindlimb field (asterisk). Scale bar; 2 µM (A and B), 30 µM (C and D).
Mentions: Scanning electron microscopy of E10.5 Ift140+/+ control and Ift140cauli/cauli mutant limb buds identified a defect in the epithelial cellular architecture (Figures 5A and B). In Ift140+/+ control limb buds, epidermal ectodermal cells have distinct, clearly defined cellular borders (Figure 5A). In contrast, individual cells in Ift140cauli/cauli mutants have poorly defined cellular borders and individual cells are difficult to identify from surface topology (Figure 5B). In addition, while the primary cilia are easily identified in >90% of wildtype cells, <20% of Ift140cauli/cauli mutant epithelial cells harbour an identifiable cilium in SEM images (Figures 5A, B, E).

Bottom Line: The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia.A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved.This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.

View Article: PubMed Central - PubMed

Affiliation: Murdoch Childrens Research Institute, Parkville, Victoria, Australia.

ABSTRACT
Cilia are architecturally complex organelles that protrude from the cell membrane and have signalling, sensory and motility functions that are central to normal tissue development and homeostasis. There are two broad categories of cilia; motile and non-motile, or primary, cilia. The central role of primary cilia in health and disease has become prominent in the past decade with the recognition of a number of human syndromes that result from defects in the formation or function of primary cilia. This rapidly growing class of conditions, now known as ciliopathies, impact the development of a diverse range of tissues including the neural axis, craniofacial structures, skeleton, kidneys, eyes and lungs. The broad impact of cilia dysfunction on development reflects the pivotal position of the primary cilia within a signalling nexus involving a growing number of growth factor systems including Hedgehog, Pdgf, Fgf, Hippo, Notch and both canonical Wnt and planar cell polarity. We have identified a novel ENU mutant allele of Ift140, which causes a mid-gestation embryonic lethal phenotype in homozygous mutant mice. Mutant embryos exhibit a range of phenotypes including exencephaly and spina bifida, craniofacial dysmorphism, digit anomalies, cardiac anomalies and somite patterning defects. A number of these phenotypes can be attributed to alterations in Hedgehog signalling, although additional signalling systems are also likely to be involved. We also report the identification of a homozygous recessive mutation in IFT140 in a Jeune syndrome patient. This ENU-induced Jeune syndrome model will be useful in delineating the origins of dysmorphology in human ciliopathies.

Show MeSH
Related in: MedlinePlus