Limits...
Influenza a virus migration and persistence in North American wild birds.

Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, Niles LJ, Danner A, Walker D, Mendenhall IH, Su YC, Dugan VG, Halpin RA, Stockwell TB, Webby RJ, Wentworth DE, Drummond AJ, Smith GJ, Webster RG - PLoS Pathog. (2013)

Bottom Line: The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations.Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes.Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore.

ABSTRACT
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

Show MeSH

Related in: MedlinePlus

A) H3-HA phylogenetic tree for isolates from Alberta.B) H3-HA phylogenetic tree for isolates from Delaware Bay. C) H3-HA phylogenetic tree for isolates from Alaska. D) Multidimensional scaling of tree-to-tree TMRCA estimates from Alberta. For reference, the space occupied by human H3N2 viruses from similar analysis is centered (grey circle). E) Multidimensional scaling of tree-to-tree patristic distance from Delaware Bay. F) Multidimensional scaling of tree-to-tree patristic distance from Alaska.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3757048&req=5

ppat-1003570-g001: A) H3-HA phylogenetic tree for isolates from Alberta.B) H3-HA phylogenetic tree for isolates from Delaware Bay. C) H3-HA phylogenetic tree for isolates from Alaska. D) Multidimensional scaling of tree-to-tree TMRCA estimates from Alberta. For reference, the space occupied by human H3N2 viruses from similar analysis is centered (grey circle). E) Multidimensional scaling of tree-to-tree patristic distance from Delaware Bay. F) Multidimensional scaling of tree-to-tree patristic distance from Alaska.

Mentions: Comparative genomic analysis of H3 subtype viruses isolated from the Alberta and Delaware Bay sites was conducted to test AIV evolutionary dynamics in different hosts. In Alberta, where birds sampled were primarily juvenile Anseriformes[20] the H3-HA phylogeny showed that H3 viruses were recovered in almost every year (ntax = 94), with both Lineage I and II viruses present (Figure 1A). In contrast, in Delaware Bay, where only Charadriiformes were sampled, H3 viruses were detected in only 7 years (ntax = 69) from 24 years of surveillance (Figure 1B). In those years when H3 viruses were isolated in Delaware Bay, only a single clade was detected each sampling season and no co-circulation of these clades was apparent. While viral prevalence in Delaware Bay and Alberta are similar [17], Anseriformes host a representative diversity of AIV in North America. In contrast, Charadriiformes host limited viral diversity exhibiting local epidemic-like dynamics [25] suggesting Charadriformes in Delaware Bay are being infected from a currently undetected AIV population.


Influenza a virus migration and persistence in North American wild birds.

Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, Niles LJ, Danner A, Walker D, Mendenhall IH, Su YC, Dugan VG, Halpin RA, Stockwell TB, Webby RJ, Wentworth DE, Drummond AJ, Smith GJ, Webster RG - PLoS Pathog. (2013)

A) H3-HA phylogenetic tree for isolates from Alberta.B) H3-HA phylogenetic tree for isolates from Delaware Bay. C) H3-HA phylogenetic tree for isolates from Alaska. D) Multidimensional scaling of tree-to-tree TMRCA estimates from Alberta. For reference, the space occupied by human H3N2 viruses from similar analysis is centered (grey circle). E) Multidimensional scaling of tree-to-tree patristic distance from Delaware Bay. F) Multidimensional scaling of tree-to-tree patristic distance from Alaska.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3757048&req=5

ppat-1003570-g001: A) H3-HA phylogenetic tree for isolates from Alberta.B) H3-HA phylogenetic tree for isolates from Delaware Bay. C) H3-HA phylogenetic tree for isolates from Alaska. D) Multidimensional scaling of tree-to-tree TMRCA estimates from Alberta. For reference, the space occupied by human H3N2 viruses from similar analysis is centered (grey circle). E) Multidimensional scaling of tree-to-tree patristic distance from Delaware Bay. F) Multidimensional scaling of tree-to-tree patristic distance from Alaska.
Mentions: Comparative genomic analysis of H3 subtype viruses isolated from the Alberta and Delaware Bay sites was conducted to test AIV evolutionary dynamics in different hosts. In Alberta, where birds sampled were primarily juvenile Anseriformes[20] the H3-HA phylogeny showed that H3 viruses were recovered in almost every year (ntax = 94), with both Lineage I and II viruses present (Figure 1A). In contrast, in Delaware Bay, where only Charadriiformes were sampled, H3 viruses were detected in only 7 years (ntax = 69) from 24 years of surveillance (Figure 1B). In those years when H3 viruses were isolated in Delaware Bay, only a single clade was detected each sampling season and no co-circulation of these clades was apparent. While viral prevalence in Delaware Bay and Alberta are similar [17], Anseriformes host a representative diversity of AIV in North America. In contrast, Charadriiformes host limited viral diversity exhibiting local epidemic-like dynamics [25] suggesting Charadriformes in Delaware Bay are being infected from a currently undetected AIV population.

Bottom Line: The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations.Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes.Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Virus Evolution, Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore.

ABSTRACT
Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

Show MeSH
Related in: MedlinePlus