Limits...
Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis) in the Atlantic using a cellular automaton approach.

Johnston MW, Purkis SJ - PLoS ONE (2013)

Bottom Line: To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases.Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established.This insight is valuable if attempts are to be made to halt this potential marine invasive species.

View Article: PubMed Central - PubMed

Affiliation: National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, USA. johnmatt@nova.edu

ABSTRACT
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

Show MeSH

Related in: MedlinePlus

Sensitivity Analysis to Larval Mortality.Settlement rates of adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’ (blue) scale using Jenks' natural breaks as class divisions. CSFK with a larval mortality rate of 0.22 d −1 (A), 0.18 d −1 (B). CSBC with a larval mortality rate of 0.22 d −1 (C), 0.18 d −1 (D).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756970&req=5

pone-0073023-g006: Sensitivity Analysis to Larval Mortality.Settlement rates of adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’ (blue) scale using Jenks' natural breaks as class divisions. CSFK with a larval mortality rate of 0.22 d −1 (A), 0.18 d −1 (B). CSBC with a larval mortality rate of 0.22 d −1 (C), 0.18 d −1 (D).

Mentions: When plotted on a map and summed by location, the results for each variation of Zp (±10%, 0.18 d −1 and 0.22 d −1) indicate the same general pattern of spread with the same ‘hot spots’ as observed in the original simulations (Figure 6). This implies that pattern and overall spatial distribution are not highly sensitive to Zp. The ρ values calculated using an alternate Zp of 0.18 d −1 resulted in values of 0.63 (CSFK) and 0.86 (CSBC). Using a significance level of 0.05 and critical value of 0.59 (CSFK) and 0.65 (CSBC), ρ values for both alternate scenarios proved to be significantly correlated to the original RMs. These findings indicate that the actual pattern and sequence of spread is not greatly sensitive to Zp when the rate is decreased. Contrastingly, stark differences were noted in the count and concentrations of settled kernels, with a mean settled kernel count per simulation of 48 (CSFK) and 17 (CSBC) at a Zp of 0.18 d −1 and 1071 (CSFK) and 506 (CSBC) at 0.22 d −1. This indicates that quantity of settled kernels, a proxy for recruitment in the model, is highly sensitive to Zp and is in agreement with findings by [13]. Also noted was a decrease in mean settlement month per step for both case studies with an alternate Zp of 0.18 d −1, which was especially prevalent in the last few steps of each invasion sequence. This result indicates that the projected invasions were gaining traction towards the end of the simulations. The alternate CSFK, with a Zp of 0.18 d −1, also displayed a potential crossover event to the Bahamas which was not projected in the original simulations, indicating a lower Zp could result in spread to the Bahamas at a faster pace (Figure 6B). Lastly, ρ values were not calculated for a Zp of 0.22 d −1 as a result of greatly reduced numbers of settled kernels in both case studies. As a result, these scenarios were unable to reliably reproduce the step sequences displayed in the original case studies. This also demonstrates the sensitivity in the model to Zp.


Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis) in the Atlantic using a cellular automaton approach.

Johnston MW, Purkis SJ - PLoS ONE (2013)

Sensitivity Analysis to Larval Mortality.Settlement rates of adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’ (blue) scale using Jenks' natural breaks as class divisions. CSFK with a larval mortality rate of 0.22 d −1 (A), 0.18 d −1 (B). CSBC with a larval mortality rate of 0.22 d −1 (C), 0.18 d −1 (D).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756970&req=5

pone-0073023-g006: Sensitivity Analysis to Larval Mortality.Settlement rates of adult breeding populations for panther grouper on a ‘hot’ (red) to ‘cold’ (blue) scale using Jenks' natural breaks as class divisions. CSFK with a larval mortality rate of 0.22 d −1 (A), 0.18 d −1 (B). CSBC with a larval mortality rate of 0.22 d −1 (C), 0.18 d −1 (D).
Mentions: When plotted on a map and summed by location, the results for each variation of Zp (±10%, 0.18 d −1 and 0.22 d −1) indicate the same general pattern of spread with the same ‘hot spots’ as observed in the original simulations (Figure 6). This implies that pattern and overall spatial distribution are not highly sensitive to Zp. The ρ values calculated using an alternate Zp of 0.18 d −1 resulted in values of 0.63 (CSFK) and 0.86 (CSBC). Using a significance level of 0.05 and critical value of 0.59 (CSFK) and 0.65 (CSBC), ρ values for both alternate scenarios proved to be significantly correlated to the original RMs. These findings indicate that the actual pattern and sequence of spread is not greatly sensitive to Zp when the rate is decreased. Contrastingly, stark differences were noted in the count and concentrations of settled kernels, with a mean settled kernel count per simulation of 48 (CSFK) and 17 (CSBC) at a Zp of 0.18 d −1 and 1071 (CSFK) and 506 (CSBC) at 0.22 d −1. This indicates that quantity of settled kernels, a proxy for recruitment in the model, is highly sensitive to Zp and is in agreement with findings by [13]. Also noted was a decrease in mean settlement month per step for both case studies with an alternate Zp of 0.18 d −1, which was especially prevalent in the last few steps of each invasion sequence. This result indicates that the projected invasions were gaining traction towards the end of the simulations. The alternate CSFK, with a Zp of 0.18 d −1, also displayed a potential crossover event to the Bahamas which was not projected in the original simulations, indicating a lower Zp could result in spread to the Bahamas at a faster pace (Figure 6B). Lastly, ρ values were not calculated for a Zp of 0.22 d −1 as a result of greatly reduced numbers of settled kernels in both case studies. As a result, these scenarios were unable to reliably reproduce the step sequences displayed in the original case studies. This also demonstrates the sensitivity in the model to Zp.

Bottom Line: To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases.Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established.This insight is valuable if attempts are to be made to halt this potential marine invasive species.

View Article: PubMed Central - PubMed

Affiliation: National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, USA. johnmatt@nova.edu

ABSTRACT
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

Show MeSH
Related in: MedlinePlus