Limits...
Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis) in the Atlantic using a cellular automaton approach.

Johnston MW, Purkis SJ - PLoS ONE (2013)

Bottom Line: To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases.Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established.This insight is valuable if attempts are to be made to halt this potential marine invasive species.

View Article: PubMed Central - PubMed

Affiliation: National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, USA. johnmatt@nova.edu

ABSTRACT
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

Show MeSH

Related in: MedlinePlus

Process flow of the enhanced ISM.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756970&req=5

pone-0073023-g002: Process flow of the enhanced ISM.

Mentions: Figure 2 presents an overview of the algorithmic flow in the model. Simulations have a definitive start and end time, expressed as a starting month and run cycles for a period of months. The ISM tracks the applicable month when selecting OC, SST, and CC values from the database. From the initial location, individual kernels are acted upon to determine the next likely geographic step, based on the grid lattice being used, and physical parameters values present in the cell. Ocean current velocity values are largely determinate of the temporal spread to downstream grid cells, with temperature, depth, and chlorophyll having a lessor influence. In grid cells with low current velocity, the effect on cell score by other static parameters, like temperature and depth, is effectively increased. This is due to the proportional decrease in total cell score contribution by ocean current [16]. A running sum is calculated to track transition time and once the larval duration threshold is reached, the last cell is selected as a settling point for the kernel. The ISM then applies Zp to determine kernel survival during transport, and examines SST, OD, and CC to determine if the cell value falls within the designated inhabitable value range. If a cell is selected for settling, a breeding age cycle timer is started to designate when the settled kernel (representing a juvenile at this point) is eligible to contribute larvae to the model. From the pool of settled kernels for each cycle, a random number between zero and one is selected to determine Z of the kernel. If the random value falls below Z, the kernel is flagged ineligible to contribute (death). If the kernel has reached maturity, as defined by the breeding age, the kernel is flagged as a breeding kernel and begins contributing larvae on the next cycle. Breeding kernels are eligible to contribute larvae on each cycle until selected for elimination by the Z test.


Modeling the potential spread of the recently identified non-native panther grouper (Chromileptes altivelis) in the Atlantic using a cellular automaton approach.

Johnston MW, Purkis SJ - PLoS ONE (2013)

Process flow of the enhanced ISM.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756970&req=5

pone-0073023-g002: Process flow of the enhanced ISM.
Mentions: Figure 2 presents an overview of the algorithmic flow in the model. Simulations have a definitive start and end time, expressed as a starting month and run cycles for a period of months. The ISM tracks the applicable month when selecting OC, SST, and CC values from the database. From the initial location, individual kernels are acted upon to determine the next likely geographic step, based on the grid lattice being used, and physical parameters values present in the cell. Ocean current velocity values are largely determinate of the temporal spread to downstream grid cells, with temperature, depth, and chlorophyll having a lessor influence. In grid cells with low current velocity, the effect on cell score by other static parameters, like temperature and depth, is effectively increased. This is due to the proportional decrease in total cell score contribution by ocean current [16]. A running sum is calculated to track transition time and once the larval duration threshold is reached, the last cell is selected as a settling point for the kernel. The ISM then applies Zp to determine kernel survival during transport, and examines SST, OD, and CC to determine if the cell value falls within the designated inhabitable value range. If a cell is selected for settling, a breeding age cycle timer is started to designate when the settled kernel (representing a juvenile at this point) is eligible to contribute larvae to the model. From the pool of settled kernels for each cycle, a random number between zero and one is selected to determine Z of the kernel. If the random value falls below Z, the kernel is flagged ineligible to contribute (death). If the kernel has reached maturity, as defined by the breeding age, the kernel is flagged as a breeding kernel and begins contributing larvae on the next cycle. Breeding kernels are eligible to contribute larvae on each cycle until selected for elimination by the Z test.

Bottom Line: To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases.Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established.This insight is valuable if attempts are to be made to halt this potential marine invasive species.

View Article: PubMed Central - PubMed

Affiliation: National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, USA. johnmatt@nova.edu

ABSTRACT
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species.

Show MeSH
Related in: MedlinePlus