Limits...
Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors

View Article: PubMed Central

ABSTRACT

In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

No MeSH data available.


Modeling/design framework
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756723&req=5

f4-sensors-07-00319: Modeling/design framework

Mentions: The investigated MEMS-based gas sensor is designed and modeled using the simulation framework shown in Figure 4. Starting from a preliminary design of the gas sensor, an investigation of the deposition process with different specifications for the various thin film layers is conducted. The data used at the first stage include the effect of the residual stresses and the variations in the material properties corresponding to different deposition processes and parameters. At this phase, a preliminary estimation is focused on investigating the reduction of the residual stresses using annealing, where this preliminary assessment is based on the application of this MEMS-based gas sensor.


Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors
Modeling/design framework
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756723&req=5

f4-sensors-07-00319: Modeling/design framework
Mentions: The investigated MEMS-based gas sensor is designed and modeled using the simulation framework shown in Figure 4. Starting from a preliminary design of the gas sensor, an investigation of the deposition process with different specifications for the various thin film layers is conducted. The data used at the first stage include the effect of the residual stresses and the variations in the material properties corresponding to different deposition processes and parameters. At this phase, a preliminary estimation is focused on investigating the reduction of the residual stresses using annealing, where this preliminary assessment is based on the application of this MEMS-based gas sensor.

View Article: PubMed Central

ABSTRACT

In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

No MeSH data available.