Limits...
Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors

View Article: PubMed Central

ABSTRACT

In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

No MeSH data available.


Effect of the variation of Young's modulus on the maximum thermal stress of different gas sensor materials
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756723&req=5

f12-sensors-07-00319: Effect of the variation of Young's modulus on the maximum thermal stress of different gas sensor materials

Mentions: The variation of the stress factor (βσ) with βE is calculated and shown in Figure 12. It can be seen that the variation in Young's modulus only generates a variation in the maximum stress level of the thin film materials at the individual layer level. As shown in Figure 12, the change of βE generates a variation in the maximum stress level ranging from +36 to −32 percent for Si3N4, -19 to 16 percent for SiO2 and −20 to 14 percent for Pt/Ti. Results shown in Figure 12 were linearly fitted using Equation (10) to express the relation between βσ and βE for different thin film materials.


Studying the Effect of Deposition Conditions on the Performance and Reliability of MEMS Gas Sensors
Effect of the variation of Young's modulus on the maximum thermal stress of different gas sensor materials
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756723&req=5

f12-sensors-07-00319: Effect of the variation of Young's modulus on the maximum thermal stress of different gas sensor materials
Mentions: The variation of the stress factor (βσ) with βE is calculated and shown in Figure 12. It can be seen that the variation in Young's modulus only generates a variation in the maximum stress level of the thin film materials at the individual layer level. As shown in Figure 12, the change of βE generates a variation in the maximum stress level ranging from +36 to −32 percent for Si3N4, -19 to 16 percent for SiO2 and −20 to 14 percent for Pt/Ti. Results shown in Figure 12 were linearly fitted using Equation (10) to express the relation between βσ and βE for different thin film materials.

View Article: PubMed Central

ABSTRACT

In this paper, the reliability of a micro-electro-mechanical system (MEMS)-based gas sensor has been investigated using Three Dimensional (3D) coupled multiphysics Finite Element (FE) analysis. The coupled field analysis involved a two-way sequential electrothermal fields coupling and a one-way sequential thermal-structural fields coupling. An automated substructuring code was developed to reduce the computational cost involved in simulating this complicated coupled multiphysics FE analysis by up to 76 percent. The substructured multiphysics model was then used to conduct a parametric study of the MEMS-based gas sensor performance in response to the variations expected in the thermal and mechanical characteristics of thin films layers composing the sensing MEMS device generated at various stages of the microfabrication process. Whenever possible, the appropriate deposition variables were correlated in the current work to the design parameters, with good accuracy, for optimum operation conditions of the gas sensor. This is used to establish a set of design rules, using linear and nonlinear empirical relations, which can be utilized in real-time at the design and development decision-making stages of similar gas sensors to enable the microfabrication of these sensors with reliable operation.

No MeSH data available.