Limits...
Gas Sensors Based on Conducting Polymers

View Article: PubMed Central

ABSTRACT

The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

No MeSH data available.


Configuration of two typical optical sensors using optical fibers.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756721&req=5

f8-sensors-07-00267: Configuration of two typical optical sensors using optical fibers.

Mentions: Long distance detection can be carried out by using an optical fiber to measure the absorbance of the polymer layer. Two typical configurations of optical devices are shown in Figure 8. One is placing the sensing film on the cross-section of the fiber, as illustrated in Figure 8A [158]. The mechanism of this device is the same as that of direct measuring techniques. The other is removing a small fraction of the cladding on the fiber and coating this section with conducting polymer, as shown in Figure 8B [159-161]. Bansal at al. described the details of this type of sensors [161]. The light reflects on the surface of conducting polymers, and the output light brings the absorption property of the conducting polymer cladding. Exposing the modified section of optic fiber will cause the change in output light.


Gas Sensors Based on Conducting Polymers
Configuration of two typical optical sensors using optical fibers.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756721&req=5

f8-sensors-07-00267: Configuration of two typical optical sensors using optical fibers.
Mentions: Long distance detection can be carried out by using an optical fiber to measure the absorbance of the polymer layer. Two typical configurations of optical devices are shown in Figure 8. One is placing the sensing film on the cross-section of the fiber, as illustrated in Figure 8A [158]. The mechanism of this device is the same as that of direct measuring techniques. The other is removing a small fraction of the cladding on the fiber and coating this section with conducting polymer, as shown in Figure 8B [159-161]. Bansal at al. described the details of this type of sensors [161]. The light reflects on the surface of conducting polymers, and the output light brings the absorption property of the conducting polymer cladding. Exposing the modified section of optic fiber will cause the change in output light.

View Article: PubMed Central

ABSTRACT

The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

No MeSH data available.