Limits...
Gas Sensors Based on Conducting Polymers

View Article: PubMed Central

ABSTRACT

The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

No MeSH data available.


Configuration of surface acoustic wave sensor device.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756721&req=5

f11-sensors-07-00267: Configuration of surface acoustic wave sensor device.

Mentions: A standard design for a SAW device is shown in Figure 11 [164]. A transmitter interdigital electrode (interdigital transducers, IDTs) and a receptor interdigital electrode are attached onto a piezoelectric crystal. The polymer film is coated on the gap between these two electrodes. An input radio frequency voltage is applied across the transmitter IDTs, inducing deformations in the piezoelectric substrate. These deformations give rise to an acoustic wave, traversing the gap between two IDTs. When it reaches the receptor IDTs, the mechanics energy was converted back to radio frequency voltage [164, 170]. The adsorption and desorption of gas on the polymer film on the gap will modulate the wave propagation characters. A phase or frequency shift will be recorded between the input and output voltages [170-172].


Gas Sensors Based on Conducting Polymers
Configuration of surface acoustic wave sensor device.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756721&req=5

f11-sensors-07-00267: Configuration of surface acoustic wave sensor device.
Mentions: A standard design for a SAW device is shown in Figure 11 [164]. A transmitter interdigital electrode (interdigital transducers, IDTs) and a receptor interdigital electrode are attached onto a piezoelectric crystal. The polymer film is coated on the gap between these two electrodes. An input radio frequency voltage is applied across the transmitter IDTs, inducing deformations in the piezoelectric substrate. These deformations give rise to an acoustic wave, traversing the gap between two IDTs. When it reaches the receptor IDTs, the mechanics energy was converted back to radio frequency voltage [164, 170]. The adsorption and desorption of gas on the polymer film on the gap will modulate the wave propagation characters. A phase or frequency shift will be recorded between the input and output voltages [170-172].

View Article: PubMed Central

ABSTRACT

The gas sensors fabricated by using conducting polymers such as polyaniline (PAni), polypyrrole (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) as the active layers have been reviewed. This review discusses the sensing mechanism and configurations of the sensors. The factors that affect the performances of the gas sensors are also addressed. The disadvantages of the sensors and a brief prospect in this research field are discussed at the end of the review.

No MeSH data available.