Limits...
Calibration of a Sensor Array (an Electronic Tongue) for Identification and Quantification of Odorants from Livestock Buildings

View Article: PubMed Central

ABSTRACT

This contribution serves a dual purpose. The first purpose was to investigate the possibility of using a sensor array (an electronic tongue) for on-line identification and quantification of key odorants representing a variety of chemical groups at two different acidities, pH 6 and 8. The second purpose was to simplify the electronic tongue by decreasing the number of electrodes from 14, which was the number of electrodes in the prototype. Different electrodes were used for identification and quantification of different key odorants. A total of eight electrodes were sufficient for identification and quantification in micromolar concentrations of the key odorants n-butyrate, ammonium and phenolate in test mixtures also containing iso-valerate, skatole and p-cresolate. The limited number of electrodes decreased the standard deviation and the relative standard deviation of triplicate measurements in comparison with the array comprising 14 electrodes. The electronic tongue was calibrated using 4 different test mixtures, each comprising 50 different combinations of key odorants in triplicates, a total of 600 measurements. Back propagation artificial neural network, partial least square and principal component analysis were used in the data analysis. The results indicate that the electronic tongue has a promising potential as an online sensor for odorants absorbed in the bioscrubber used in livestock buildings.

No MeSH data available.


Related in: MedlinePlus

PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6. Samples (10 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by dashed line. Full cross validation was used and five electrodes were sufficient.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3756715&req=5

f7-sensors-07-00103: PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6. Samples (10 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by dashed line. Full cross validation was used and five electrodes were sufficient.

Mentions: In this test mixture, all samples of key odorants containing high concentrations of n-butyrate (5 ×10-4 - 10-3 M) were identified. PLS-1 and full cross validation were used and five electrodes (no. 1, 2, 4, 5, 8) were sufficient. The PLS-1 scores plot (Fig. 7) identifies these samples (10 samples) at the upper right side of the figure. This indicates that the ET can monitor high n-butyrate concentrations (5 × 10-4 -10-3 M) in the test mixture.


Calibration of a Sensor Array (an Electronic Tongue) for Identification and Quantification of Odorants from Livestock Buildings
PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6. Samples (10 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by dashed line. Full cross validation was used and five electrodes were sufficient.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3756715&req=5

f7-sensors-07-00103: PLS-1 score plot of all samples in test mixtures of key odorants containing p-cresolate at pH 6. Samples (10 samples) with high concentrations (5 × 10-4 - 10-3 M) of n-butyrate are surrounded by dashed line. Full cross validation was used and five electrodes were sufficient.
Mentions: In this test mixture, all samples of key odorants containing high concentrations of n-butyrate (5 ×10-4 - 10-3 M) were identified. PLS-1 and full cross validation were used and five electrodes (no. 1, 2, 4, 5, 8) were sufficient. The PLS-1 scores plot (Fig. 7) identifies these samples (10 samples) at the upper right side of the figure. This indicates that the ET can monitor high n-butyrate concentrations (5 × 10-4 -10-3 M) in the test mixture.

View Article: PubMed Central

ABSTRACT

This contribution serves a dual purpose. The first purpose was to investigate the possibility of using a sensor array (an electronic tongue) for on-line identification and quantification of key odorants representing a variety of chemical groups at two different acidities, pH 6 and 8. The second purpose was to simplify the electronic tongue by decreasing the number of electrodes from 14, which was the number of electrodes in the prototype. Different electrodes were used for identification and quantification of different key odorants. A total of eight electrodes were sufficient for identification and quantification in micromolar concentrations of the key odorants n-butyrate, ammonium and phenolate in test mixtures also containing iso-valerate, skatole and p-cresolate. The limited number of electrodes decreased the standard deviation and the relative standard deviation of triplicate measurements in comparison with the array comprising 14 electrodes. The electronic tongue was calibrated using 4 different test mixtures, each comprising 50 different combinations of key odorants in triplicates, a total of 600 measurements. Back propagation artificial neural network, partial least square and principal component analysis were used in the data analysis. The results indicate that the electronic tongue has a promising potential as an online sensor for odorants absorbed in the bioscrubber used in livestock buildings.

No MeSH data available.


Related in: MedlinePlus