Limits...
Nutrigenomics approach elucidates health-promoting effects of high vegetable intake in lean and obese men.

Pasman WJ, van Erk MJ, Klöpping WA, Pellis L, Wopereis S, Bijlsma S, Hendriks HF, Kardinaal AF - Genes Nutr (2013)

Bottom Line: We aimed to explore whether vegetable consumption according to guidelines has beneficial health effects determined with classical biomarkers and nutrigenomics technologies.The high vegetable intake resulted in increased levels of plasma amino acid metabolites, decreased levels of 9-HODE and prostaglandin D3 and decreased levels of ASAT and ALP compared to low vegetable intake.By inclusion of sensitive omics technologies and comparing the changes induced by high vegetable intake with changes induced by energy restriction, it has been shown that part of vegetables' health benefits are mediated by changes in energy metabolism, inflammatory processes and oxidative stress.

View Article: PubMed Central - PubMed

Affiliation: TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, wilrike.pasman@tno.nl.

ABSTRACT
We aimed to explore whether vegetable consumption according to guidelines has beneficial health effects determined with classical biomarkers and nutrigenomics technologies. Fifteen lean (age 36 ± 7 years; BMI 23.4 ± 1.7 kg m(-2)) and 17 obese (age 40 ± 6 years; BMI 30.3 ± 2.4 kg m(-2)) men consumed 50- or 200-g vegetables for 4 weeks in a randomized, crossover trial. Afterward, all subjects underwent 4 weeks of energy restriction (60 % of normal energy intake). Despite the limited weight loss of 1.7 ± 2.4 kg for the lean and 2.1 ± 1.9 kg for the obese due to energy restriction, beneficial health effects were found, including lower total cholesterol, LDL cholesterol and HbA1c concentrations. The high vegetable intake resulted in increased levels of plasma amino acid metabolites, decreased levels of 9-HODE and prostaglandin D3 and decreased levels of ASAT and ALP compared to low vegetable intake. Adipose tissue gene expression changes in response to vegetable intake were identified, and sets of selected genes were submitted to network analysis. The network of inflammation genes illustrated a central role for NFkB in (adipose tissue) modulation of inflammation by increased vegetable intake, in lean as well as obese subjects. In obese subjects, high vegetable intake also resulted in changes related to energy metabolism, adhesion and inflammation. By inclusion of sensitive omics technologies and comparing the changes induced by high vegetable intake with changes induced by energy restriction, it has been shown that part of vegetables' health benefits are mediated by changes in energy metabolism, inflammatory processes and oxidative stress.

No MeSH data available.


Related in: MedlinePlus

Network showing biological links between genes involved in energy metabolism and plasma markers that respond to high vegetable intake in obese subjects. Red circle indicates up-regulation in response to high vegetable intake, blue circle indicates down-regulation in response to high vegetable intake. AATC glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1); ALPL alkaline phosphatase, liver/bone/kidney; C/EBP CCAAT/enhancer binding protein (C/EBP); COG complex component of oligomeric golgi complex; COG5 component of oligomeric golgi complex 5; COG8 component of oligomeric golgi complex 8; CREB1 cAMP responsive element binding protein 1; c-Myc v-myc myelocytomatosis viral oncogene homolog (avian); ESR1 (nuclear) estrogen receptor 1; ESR2 estrogen receptor 2 (ER beta); ETO runt-related transcription factor 1; translocated to, 1 (cyclin D-related); FKHR forkhead box O1; GATA-1 GATA binding protein 1 (globin transcription factor 1); GLNA glutamate-ammonia ligase; 15(S)-HETE 15S-hydroxyeicosatetraenoic acid; 15-HETE 15-hydroxyeicosatetraenoic acid; HOXA10 homeobox A10; PPAR-γ peroxisome proliferator-activated receptor gamma; RXR-α retinoid X receptor, alpha; PRC (PGC-1 related) peroxisome proliferator-activated receptor gamma, coactivator-related 1; PYC pyruvate carboxylase; SP1 Sp1 transcription factor; SRGAP2 SLIT-ROBO Rho GTPase activating protein 2; STAT5A signal transducer and activator of transcription 5A; Willin FERM domain containing 6
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3755133&req=5

Fig4: Network showing biological links between genes involved in energy metabolism and plasma markers that respond to high vegetable intake in obese subjects. Red circle indicates up-regulation in response to high vegetable intake, blue circle indicates down-regulation in response to high vegetable intake. AATC glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1); ALPL alkaline phosphatase, liver/bone/kidney; C/EBP CCAAT/enhancer binding protein (C/EBP); COG complex component of oligomeric golgi complex; COG5 component of oligomeric golgi complex 5; COG8 component of oligomeric golgi complex 8; CREB1 cAMP responsive element binding protein 1; c-Myc v-myc myelocytomatosis viral oncogene homolog (avian); ESR1 (nuclear) estrogen receptor 1; ESR2 estrogen receptor 2 (ER beta); ETO runt-related transcription factor 1; translocated to, 1 (cyclin D-related); FKHR forkhead box O1; GATA-1 GATA binding protein 1 (globin transcription factor 1); GLNA glutamate-ammonia ligase; 15(S)-HETE 15S-hydroxyeicosatetraenoic acid; 15-HETE 15-hydroxyeicosatetraenoic acid; HOXA10 homeobox A10; PPAR-γ peroxisome proliferator-activated receptor gamma; RXR-α retinoid X receptor, alpha; PRC (PGC-1 related) peroxisome proliferator-activated receptor gamma, coactivator-related 1; PYC pyruvate carboxylase; SP1 Sp1 transcription factor; SRGAP2 SLIT-ROBO Rho GTPase activating protein 2; STAT5A signal transducer and activator of transcription 5A; Willin FERM domain containing 6

Mentions: To illustrate possible biological links between observed effects of high vegetable intake on obese subjects, biological networks on the basis of inflammation, energy metabolism and adhesion genes from Table 4 together with the significantly changed plasma metabolites and classical markers were created. The network in Fig. 3 shows that the inflammatory gene expression changes due to vegetable intervention in adipose tissue may be regulated by NFkB and PPARγ and that 9-HODE and 15-HETE (measured in plasma) may be linked to this network through PPARγ. All but two inflammatory genes listed in Supplementary File 2 are connected in the network. Furthermore, the network in Fig. 4 illustrates a biological link between 9-HODE and 15-HETE and specific energy metabolism genes, also through PPARγ. In addition to PPARγ, many other transcription factors may be involved in the regulation of energy metabolism in obese subjects, for example, CREB1, STAT5A, ESR2, ESR1 and SP1. Through these regulators, the plasma markers ASAT (AATC) and ALP (ALPL) were also linked to this network.Fig. 3


Nutrigenomics approach elucidates health-promoting effects of high vegetable intake in lean and obese men.

Pasman WJ, van Erk MJ, Klöpping WA, Pellis L, Wopereis S, Bijlsma S, Hendriks HF, Kardinaal AF - Genes Nutr (2013)

Network showing biological links between genes involved in energy metabolism and plasma markers that respond to high vegetable intake in obese subjects. Red circle indicates up-regulation in response to high vegetable intake, blue circle indicates down-regulation in response to high vegetable intake. AATC glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1); ALPL alkaline phosphatase, liver/bone/kidney; C/EBP CCAAT/enhancer binding protein (C/EBP); COG complex component of oligomeric golgi complex; COG5 component of oligomeric golgi complex 5; COG8 component of oligomeric golgi complex 8; CREB1 cAMP responsive element binding protein 1; c-Myc v-myc myelocytomatosis viral oncogene homolog (avian); ESR1 (nuclear) estrogen receptor 1; ESR2 estrogen receptor 2 (ER beta); ETO runt-related transcription factor 1; translocated to, 1 (cyclin D-related); FKHR forkhead box O1; GATA-1 GATA binding protein 1 (globin transcription factor 1); GLNA glutamate-ammonia ligase; 15(S)-HETE 15S-hydroxyeicosatetraenoic acid; 15-HETE 15-hydroxyeicosatetraenoic acid; HOXA10 homeobox A10; PPAR-γ peroxisome proliferator-activated receptor gamma; RXR-α retinoid X receptor, alpha; PRC (PGC-1 related) peroxisome proliferator-activated receptor gamma, coactivator-related 1; PYC pyruvate carboxylase; SP1 Sp1 transcription factor; SRGAP2 SLIT-ROBO Rho GTPase activating protein 2; STAT5A signal transducer and activator of transcription 5A; Willin FERM domain containing 6
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3755133&req=5

Fig4: Network showing biological links between genes involved in energy metabolism and plasma markers that respond to high vegetable intake in obese subjects. Red circle indicates up-regulation in response to high vegetable intake, blue circle indicates down-regulation in response to high vegetable intake. AATC glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1); ALPL alkaline phosphatase, liver/bone/kidney; C/EBP CCAAT/enhancer binding protein (C/EBP); COG complex component of oligomeric golgi complex; COG5 component of oligomeric golgi complex 5; COG8 component of oligomeric golgi complex 8; CREB1 cAMP responsive element binding protein 1; c-Myc v-myc myelocytomatosis viral oncogene homolog (avian); ESR1 (nuclear) estrogen receptor 1; ESR2 estrogen receptor 2 (ER beta); ETO runt-related transcription factor 1; translocated to, 1 (cyclin D-related); FKHR forkhead box O1; GATA-1 GATA binding protein 1 (globin transcription factor 1); GLNA glutamate-ammonia ligase; 15(S)-HETE 15S-hydroxyeicosatetraenoic acid; 15-HETE 15-hydroxyeicosatetraenoic acid; HOXA10 homeobox A10; PPAR-γ peroxisome proliferator-activated receptor gamma; RXR-α retinoid X receptor, alpha; PRC (PGC-1 related) peroxisome proliferator-activated receptor gamma, coactivator-related 1; PYC pyruvate carboxylase; SP1 Sp1 transcription factor; SRGAP2 SLIT-ROBO Rho GTPase activating protein 2; STAT5A signal transducer and activator of transcription 5A; Willin FERM domain containing 6
Mentions: To illustrate possible biological links between observed effects of high vegetable intake on obese subjects, biological networks on the basis of inflammation, energy metabolism and adhesion genes from Table 4 together with the significantly changed plasma metabolites and classical markers were created. The network in Fig. 3 shows that the inflammatory gene expression changes due to vegetable intervention in adipose tissue may be regulated by NFkB and PPARγ and that 9-HODE and 15-HETE (measured in plasma) may be linked to this network through PPARγ. All but two inflammatory genes listed in Supplementary File 2 are connected in the network. Furthermore, the network in Fig. 4 illustrates a biological link between 9-HODE and 15-HETE and specific energy metabolism genes, also through PPARγ. In addition to PPARγ, many other transcription factors may be involved in the regulation of energy metabolism in obese subjects, for example, CREB1, STAT5A, ESR2, ESR1 and SP1. Through these regulators, the plasma markers ASAT (AATC) and ALP (ALPL) were also linked to this network.Fig. 3

Bottom Line: We aimed to explore whether vegetable consumption according to guidelines has beneficial health effects determined with classical biomarkers and nutrigenomics technologies.The high vegetable intake resulted in increased levels of plasma amino acid metabolites, decreased levels of 9-HODE and prostaglandin D3 and decreased levels of ASAT and ALP compared to low vegetable intake.By inclusion of sensitive omics technologies and comparing the changes induced by high vegetable intake with changes induced by energy restriction, it has been shown that part of vegetables' health benefits are mediated by changes in energy metabolism, inflammatory processes and oxidative stress.

View Article: PubMed Central - PubMed

Affiliation: TNO, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, wilrike.pasman@tno.nl.

ABSTRACT
We aimed to explore whether vegetable consumption according to guidelines has beneficial health effects determined with classical biomarkers and nutrigenomics technologies. Fifteen lean (age 36 ± 7 years; BMI 23.4 ± 1.7 kg m(-2)) and 17 obese (age 40 ± 6 years; BMI 30.3 ± 2.4 kg m(-2)) men consumed 50- or 200-g vegetables for 4 weeks in a randomized, crossover trial. Afterward, all subjects underwent 4 weeks of energy restriction (60 % of normal energy intake). Despite the limited weight loss of 1.7 ± 2.4 kg for the lean and 2.1 ± 1.9 kg for the obese due to energy restriction, beneficial health effects were found, including lower total cholesterol, LDL cholesterol and HbA1c concentrations. The high vegetable intake resulted in increased levels of plasma amino acid metabolites, decreased levels of 9-HODE and prostaglandin D3 and decreased levels of ASAT and ALP compared to low vegetable intake. Adipose tissue gene expression changes in response to vegetable intake were identified, and sets of selected genes were submitted to network analysis. The network of inflammation genes illustrated a central role for NFkB in (adipose tissue) modulation of inflammation by increased vegetable intake, in lean as well as obese subjects. In obese subjects, high vegetable intake also resulted in changes related to energy metabolism, adhesion and inflammation. By inclusion of sensitive omics technologies and comparing the changes induced by high vegetable intake with changes induced by energy restriction, it has been shown that part of vegetables' health benefits are mediated by changes in energy metabolism, inflammatory processes and oxidative stress.

No MeSH data available.


Related in: MedlinePlus