Limits...
Growing poplars for research with and without mycorrhizas.

Müller A, Volmer K, Mishra-Knyrim M, Polle A - Front Plant Sci (2013)

Bottom Line: The basis of these investigations is the reproducible production of homogeneous plant material.Maintenance and plant preparation require different multiplication and rooting media.Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

View Article: PubMed Central - PubMed

Affiliation: Forest Botany and Tree Physiology, Büsgen-Institut, Georg-August Universität Göttingen Göttingen, Germany.

ABSTRACT
During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research have become available. Poplar species occur in different habitats and harbor large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula, and P. euphratica) and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus) as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

No MeSH data available.


Related in: MedlinePlus

Poplar plantlets in a Petri dish system under axenic conditions in sand. Petri dishes with P. trichocarpa immediately after planting (A) and after 5 weeks (B). Petri dishes with P. × canescens immediately after planting (C) and after 5 weeks (D). Height increment (E) and fresh root biomass of P. trichocarpa and Populus × canescens after 5 weeks (F). Data are means (±SE, n = 12). The same letters indicate the absence of significant difference with p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3753594&req=5

Figure 2: Poplar plantlets in a Petri dish system under axenic conditions in sand. Petri dishes with P. trichocarpa immediately after planting (A) and after 5 weeks (B). Petri dishes with P. × canescens immediately after planting (C) and after 5 weeks (D). Height increment (E) and fresh root biomass of P. trichocarpa and Populus × canescens after 5 weeks (F). Data are means (±SE, n = 12). The same letters indicate the absence of significant difference with p < 0.05.

Mentions: In our study we grew P. × canescens and P. trichocarpa in sand cultures. For this purpose square Petri dishes (12 × 12 cm, Carl Roth GmbH & CoKG, Karsruhe, Germany) were equipped with a self-made spacer, which consisted of an 11 cm long flexible tube (Rotilab PVC tube, Ø inside 6 mm, outside 10 mm, Carl Roth) connected with tube couplers (Carl Roth) on both ends for stabilization (Figures 2A–D). For the fixation of the plantlets, a small indentation was cut into the tube with a razor blade and the plantlet was inserted. The spacer was introduced at 4 cm from the bottom to fix the position of plants and soil. The lower part was filled with 75 g of autoclaved sand (Ø 0.71–1.25 mm particle size, Melo, Göttingen, Germany; Figure 2). We used plantlets that had been grown for 18 d on WPM medium (as described above). Plantlets with three to four roots with a length of 0.5–1 cm were transferred into the sand culture. P. × canescens or P. trichocarpa plantlets were carefully placed in the indentations of the spacer tube with the roots placed in the sand. An aliquot of 8 ml of the sterilized growing medium (WPM) was added to the sand. Afterwards the Petri dishes were sealed with Parafilm and kept in a growth room under the same environmental conditions as before (see above). To prevent light exposure of the roots, the bottom halves of the Petri dishes were wrapped in foil. The plates were arranged vertically in self-made plastic racks for optimal light exposure and grown under same environmental conditions as before. We kept the plants in these systems for 5 weeks without further fertilizer addition (Figure 2). Growth was measured weekly by scanning the Petri dishes with a resolution of 300 dpi (CanScan 4400F, Canon Inc, Tokyo, Japan) and image analysis software (DatInf® Measure 2.1, Tübingen, Germany). After 5 weeks of growth, the plantlets were harvested.


Growing poplars for research with and without mycorrhizas.

Müller A, Volmer K, Mishra-Knyrim M, Polle A - Front Plant Sci (2013)

Poplar plantlets in a Petri dish system under axenic conditions in sand. Petri dishes with P. trichocarpa immediately after planting (A) and after 5 weeks (B). Petri dishes with P. × canescens immediately after planting (C) and after 5 weeks (D). Height increment (E) and fresh root biomass of P. trichocarpa and Populus × canescens after 5 weeks (F). Data are means (±SE, n = 12). The same letters indicate the absence of significant difference with p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3753594&req=5

Figure 2: Poplar plantlets in a Petri dish system under axenic conditions in sand. Petri dishes with P. trichocarpa immediately after planting (A) and after 5 weeks (B). Petri dishes with P. × canescens immediately after planting (C) and after 5 weeks (D). Height increment (E) and fresh root biomass of P. trichocarpa and Populus × canescens after 5 weeks (F). Data are means (±SE, n = 12). The same letters indicate the absence of significant difference with p < 0.05.
Mentions: In our study we grew P. × canescens and P. trichocarpa in sand cultures. For this purpose square Petri dishes (12 × 12 cm, Carl Roth GmbH & CoKG, Karsruhe, Germany) were equipped with a self-made spacer, which consisted of an 11 cm long flexible tube (Rotilab PVC tube, Ø inside 6 mm, outside 10 mm, Carl Roth) connected with tube couplers (Carl Roth) on both ends for stabilization (Figures 2A–D). For the fixation of the plantlets, a small indentation was cut into the tube with a razor blade and the plantlet was inserted. The spacer was introduced at 4 cm from the bottom to fix the position of plants and soil. The lower part was filled with 75 g of autoclaved sand (Ø 0.71–1.25 mm particle size, Melo, Göttingen, Germany; Figure 2). We used plantlets that had been grown for 18 d on WPM medium (as described above). Plantlets with three to four roots with a length of 0.5–1 cm were transferred into the sand culture. P. × canescens or P. trichocarpa plantlets were carefully placed in the indentations of the spacer tube with the roots placed in the sand. An aliquot of 8 ml of the sterilized growing medium (WPM) was added to the sand. Afterwards the Petri dishes were sealed with Parafilm and kept in a growth room under the same environmental conditions as before (see above). To prevent light exposure of the roots, the bottom halves of the Petri dishes were wrapped in foil. The plates were arranged vertically in self-made plastic racks for optimal light exposure and grown under same environmental conditions as before. We kept the plants in these systems for 5 weeks without further fertilizer addition (Figure 2). Growth was measured weekly by scanning the Petri dishes with a resolution of 300 dpi (CanScan 4400F, Canon Inc, Tokyo, Japan) and image analysis software (DatInf® Measure 2.1, Tübingen, Germany). After 5 weeks of growth, the plantlets were harvested.

Bottom Line: The basis of these investigations is the reproducible production of homogeneous plant material.Maintenance and plant preparation require different multiplication and rooting media.Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

View Article: PubMed Central - PubMed

Affiliation: Forest Botany and Tree Physiology, Büsgen-Institut, Georg-August Universität Göttingen Göttingen, Germany.

ABSTRACT
During the last decades the importance of the genus Populus increased because the poplar genome has been sequenced and molecular tools for basic research have become available. Poplar species occur in different habitats and harbor large genetic variation, which can be exploited for economic applications and for increasing our knowledge on the basic molecular mechanisms of the woody life style. Poplars are, therefore, employed to unravel the molecular mechanisms of wood formation, stress tolerance, tree nutrition and interaction with other organisms such as pathogens or mycorrhiza. The basis of these investigations is the reproducible production of homogeneous plant material. In this method paper we describe techniques and growth conditions for the in vitro propagation of different poplar species (Populus × canescens, P. trichocarpa, P. tremula, and P. euphratica) and ectomycorrhizal fungi (Laccaria bicolor, Paxillus involutus) as well as for their co-cultivation for ectomycorrhizal synthesis. Maintenance and plant preparation require different multiplication and rooting media. Growth systems to cultivate poplars under axenic conditions in agar and sand cultures with and without mycorrhizal fungi are described. Transfer of the plants from in vitro to in situ conditions is critical and hardening is important to prevent high mortality. Growth and vitality of the trees in vitro and outdoors with and without ectomycorrhizas are reported.

No MeSH data available.


Related in: MedlinePlus