Limits...
Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.

Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gómez-Lechón MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG - Arch. Toxicol. (2013)

Bottom Line: When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes.One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation.Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

View Article: PubMed Central - PubMed

Affiliation: Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139, Dortmund, Germany.

ABSTRACT
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

Show MeSH

Related in: MedlinePlus

Time course of albumin secretion by hepatocytes within alginate, alginate/GC (a) and alginate/GC/heparin (b) sponges. Albumin secretion rates were measured with various concentrations of GC to alginate contents under the fixed alginate concentration, and heparin to alginate contents under the fixed GC concentration
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3753504&req=5

Fig12: Time course of albumin secretion by hepatocytes within alginate, alginate/GC (a) and alginate/GC/heparin (b) sponges. Albumin secretion rates were measured with various concentrations of GC to alginate contents under the fixed alginate concentration, and heparin to alginate contents under the fixed GC concentration

Mentions: Formation of multicellular hepatocyte spheroids in the 3D culture is a promising approach for enhancing liver-specific functions in bioartificial liver devices. Therefore, a highly porous hydrogel, alginate/galactosylated chitosan/heparin scaffolds as a synthetic ECM, was fabricated using the freeze-drying technique through electrostatic interaction (Seo et al. 2006a). The level of albumin secretion in the alginate/galactosylated chitosan/heparin scaffolds was markedly enhanced compared to that in alginate/galactosylated chitosan scaffolds (shown in Fig. 12). It is likely that the alginate/galactosylated chitosan/heparin scaffolds provide more multicellular spheroid formation mediated by cell-to-cell adhesion. However, the detailed mechanism of enhanced functions by hepatocyte spheroids within the alginate/galactosylated chitosan/heparin scaffolds is not fully understood.Fig. 12


Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.

Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gómez-Lechón MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG - Arch. Toxicol. (2013)

Time course of albumin secretion by hepatocytes within alginate, alginate/GC (a) and alginate/GC/heparin (b) sponges. Albumin secretion rates were measured with various concentrations of GC to alginate contents under the fixed alginate concentration, and heparin to alginate contents under the fixed GC concentration
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3753504&req=5

Fig12: Time course of albumin secretion by hepatocytes within alginate, alginate/GC (a) and alginate/GC/heparin (b) sponges. Albumin secretion rates were measured with various concentrations of GC to alginate contents under the fixed alginate concentration, and heparin to alginate contents under the fixed GC concentration
Mentions: Formation of multicellular hepatocyte spheroids in the 3D culture is a promising approach for enhancing liver-specific functions in bioartificial liver devices. Therefore, a highly porous hydrogel, alginate/galactosylated chitosan/heparin scaffolds as a synthetic ECM, was fabricated using the freeze-drying technique through electrostatic interaction (Seo et al. 2006a). The level of albumin secretion in the alginate/galactosylated chitosan/heparin scaffolds was markedly enhanced compared to that in alginate/galactosylated chitosan scaffolds (shown in Fig. 12). It is likely that the alginate/galactosylated chitosan/heparin scaffolds provide more multicellular spheroid formation mediated by cell-to-cell adhesion. However, the detailed mechanism of enhanced functions by hepatocyte spheroids within the alginate/galactosylated chitosan/heparin scaffolds is not fully understood.Fig. 12

Bottom Line: When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes.One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation.Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

View Article: PubMed Central - PubMed

Affiliation: Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139, Dortmund, Germany.

ABSTRACT
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

Show MeSH
Related in: MedlinePlus