Limits...
Interspecific acoustic recognition in two European bat communities.

Dorado-Correa AM, Goerlitz HR, Siemers BM - Front Physiol (2013)

Bottom Line: However, it is still unknown if and how acoustic species-recognition mediates interspecific interactions in the field.In particular, Myotis capaccinii reacted equally to the feeding buzzes of conspecifics and to ecologically more similar heterospecifics.Our results confirm eavesdropping on feeding buzzes at the intraspecific level in wild bats and provide the first experimental quantification of potential eavesdropping in European bats at the interspecific level.

View Article: PubMed Central - PubMed

Affiliation: Sensory Ecology Group, Max Planck Institute for Ornithology Seewiesen, Germany ; Department of Biology II, Munich Graduate Program for Evolution, Ecology and Systematics, Ludwig-Maximilians-University Munich, Germany.

ABSTRACT
Echolocating bats emit echolocation calls for spatial orientation and foraging. These calls are often species-specific and are emitted at high intensity and repetition rate. Therefore, these calls could potentially function in intra- and/or inter-specific bat communication. For example, bats in the field approach playbacks of conspecific feeding buzzes, probably because feeding buzzes indicate an available foraging patch. In captivity, some species of bats recognize and distinguish the echolocation calls of different sympatric species. However, it is still unknown if and how acoustic species-recognition mediates interspecific interactions in the field. Here we aim to understand eavesdropping on bat echolocation calls within and across species boundaries in wild bats. We presented playbacks of conspecific and heterospecific search calls and feeding buzzes to four bat species with different foraging ecologies. The bats were generally more attracted by feeding buzzes than search calls and more by the calls of conspecifics than their heterospecifics. Furthermore, bats showed differential reaction to the calls of the heterospecifics. In particular, Myotis capaccinii reacted equally to the feeding buzzes of conspecifics and to ecologically more similar heterospecifics. Our results confirm eavesdropping on feeding buzzes at the intraspecific level in wild bats and provide the first experimental quantification of potential eavesdropping in European bats at the interspecific level. Our data support the hypothesis that bat echolocation calls have a communicative potential that allows interspecific, and potentially intraspecific, eavesdropping in the wild.

No MeSH data available.


Related in: MedlinePlus

Spectograms (top panel, amplitude color coded) and oscillograms (below, yellow on black) of the echolocation calls of all six recorded bat species. The echolocation calls show species-specific differences and a characteristic change over the course of a feeding event (search phase, approach phase, feeding buzz).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3753017&req=5

Figure 1: Spectograms (top panel, amplitude color coded) and oscillograms (below, yellow on black) of the echolocation calls of all six recorded bat species. The echolocation calls show species-specific differences and a characteristic change over the course of a feeding event (search phase, approach phase, feeding buzz).

Mentions: Echolocating bats are particularly interesting for studying acoustic information transfer because they employ two different types of calls: social calls and echolocation calls. Social calls are used for social interactions between individuals (Barclay et al., 1979), while in contrast, ultrasonic echolocation calls are emitted by the bat for its own orientation, navigation and also for foraging in many species (Fenton, 1984; Schnitzler and Kalko, 2001; Neuweiler, 2003; Schnitzler et al., 2003). Echolocation calls are often species-specific, each species having a unique spectro-temporal structure (Barclay, 1999; Siemers et al., 2001; Obrist et al., 2004; Siemers and Schnitzler, 2004). In addition, this spectro-temporal structure is flexibly adapted to the habitat and behavioral task (Schnitzler and Kalko, 2001; Jones and Siemers, 2011). Particularly during foraging, the echolocation call sequence undergoes strong changes in its acoustic spectro-temporal structure (Kalko, 1995; Bradbury and Vehrencamp, 1998; Schnitzler and Kalko, 2001; Siemers, 2006). The search phase is characterized by calls emitted at a regular repetition rate. Upon prey detection, calls become shorter, more broadband and are emitted with an increasing repetition rate (approach phase) until the feeding buzz of up to 200 calls per second just before the capture (Siemers, 2006; Figure 1). Since echolocation calls belong to the loudest animal vocalizations (Holderied and von Helversen, 2003; Surlykke and Kalko, 2008), they are also audible to other bats, prey and predators over considerable distances of tens to a hundred or more meters, depending on species (Jones and Siemers, 2011). Echolocation calls are therefore an inevitably distributed source of information for other bats in the vicinity (Jones and Siemers, 2011), which may potentially eavesdrop on this available information about species identity and foraging activity.


Interspecific acoustic recognition in two European bat communities.

Dorado-Correa AM, Goerlitz HR, Siemers BM - Front Physiol (2013)

Spectograms (top panel, amplitude color coded) and oscillograms (below, yellow on black) of the echolocation calls of all six recorded bat species. The echolocation calls show species-specific differences and a characteristic change over the course of a feeding event (search phase, approach phase, feeding buzz).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3753017&req=5

Figure 1: Spectograms (top panel, amplitude color coded) and oscillograms (below, yellow on black) of the echolocation calls of all six recorded bat species. The echolocation calls show species-specific differences and a characteristic change over the course of a feeding event (search phase, approach phase, feeding buzz).
Mentions: Echolocating bats are particularly interesting for studying acoustic information transfer because they employ two different types of calls: social calls and echolocation calls. Social calls are used for social interactions between individuals (Barclay et al., 1979), while in contrast, ultrasonic echolocation calls are emitted by the bat for its own orientation, navigation and also for foraging in many species (Fenton, 1984; Schnitzler and Kalko, 2001; Neuweiler, 2003; Schnitzler et al., 2003). Echolocation calls are often species-specific, each species having a unique spectro-temporal structure (Barclay, 1999; Siemers et al., 2001; Obrist et al., 2004; Siemers and Schnitzler, 2004). In addition, this spectro-temporal structure is flexibly adapted to the habitat and behavioral task (Schnitzler and Kalko, 2001; Jones and Siemers, 2011). Particularly during foraging, the echolocation call sequence undergoes strong changes in its acoustic spectro-temporal structure (Kalko, 1995; Bradbury and Vehrencamp, 1998; Schnitzler and Kalko, 2001; Siemers, 2006). The search phase is characterized by calls emitted at a regular repetition rate. Upon prey detection, calls become shorter, more broadband and are emitted with an increasing repetition rate (approach phase) until the feeding buzz of up to 200 calls per second just before the capture (Siemers, 2006; Figure 1). Since echolocation calls belong to the loudest animal vocalizations (Holderied and von Helversen, 2003; Surlykke and Kalko, 2008), they are also audible to other bats, prey and predators over considerable distances of tens to a hundred or more meters, depending on species (Jones and Siemers, 2011). Echolocation calls are therefore an inevitably distributed source of information for other bats in the vicinity (Jones and Siemers, 2011), which may potentially eavesdrop on this available information about species identity and foraging activity.

Bottom Line: However, it is still unknown if and how acoustic species-recognition mediates interspecific interactions in the field.In particular, Myotis capaccinii reacted equally to the feeding buzzes of conspecifics and to ecologically more similar heterospecifics.Our results confirm eavesdropping on feeding buzzes at the intraspecific level in wild bats and provide the first experimental quantification of potential eavesdropping in European bats at the interspecific level.

View Article: PubMed Central - PubMed

Affiliation: Sensory Ecology Group, Max Planck Institute for Ornithology Seewiesen, Germany ; Department of Biology II, Munich Graduate Program for Evolution, Ecology and Systematics, Ludwig-Maximilians-University Munich, Germany.

ABSTRACT
Echolocating bats emit echolocation calls for spatial orientation and foraging. These calls are often species-specific and are emitted at high intensity and repetition rate. Therefore, these calls could potentially function in intra- and/or inter-specific bat communication. For example, bats in the field approach playbacks of conspecific feeding buzzes, probably because feeding buzzes indicate an available foraging patch. In captivity, some species of bats recognize and distinguish the echolocation calls of different sympatric species. However, it is still unknown if and how acoustic species-recognition mediates interspecific interactions in the field. Here we aim to understand eavesdropping on bat echolocation calls within and across species boundaries in wild bats. We presented playbacks of conspecific and heterospecific search calls and feeding buzzes to four bat species with different foraging ecologies. The bats were generally more attracted by feeding buzzes than search calls and more by the calls of conspecifics than their heterospecifics. Furthermore, bats showed differential reaction to the calls of the heterospecifics. In particular, Myotis capaccinii reacted equally to the feeding buzzes of conspecifics and to ecologically more similar heterospecifics. Our results confirm eavesdropping on feeding buzzes at the intraspecific level in wild bats and provide the first experimental quantification of potential eavesdropping in European bats at the interspecific level. Our data support the hypothesis that bat echolocation calls have a communicative potential that allows interspecific, and potentially intraspecific, eavesdropping in the wild.

No MeSH data available.


Related in: MedlinePlus