Limits...
Developmental and activity-dependent plasticity of filiform hair receptors in the locust.

Pflüger HJ, Wolf H - Front Physiol (2013)

Bottom Line: The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles.A role of the hair-to-interneuron in flight steering is thus suggested.This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin Berlin, Germany.

ABSTRACT
A group of wind sensitive filiform hair receptors on the locust thorax and head makes contact onto a pair of identified interneuron, A4I1. The hair receptors' central nervous projections exhibit pronounced structural dynamics during nymphal development, for example, by gradually eliminating their ipsilateral dendritic field while maintaining the contralateral one. These changes are dependent not only on hormones controlling development but on neuronal activity as well. The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles. During stationary flight in front of a wind tunnel, interneuron A4I1 is active in the wing beat rhythm, and in addition it responds strongly to stimulation of sensory hairs in its receptive field. A role of the hair-to-interneuron in flight steering is thus suggested. This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.

No MeSH data available.


Related in: MedlinePlus

The locust filiform hair-to-interneuron system. (A) Schematic drawings of a locust viewed from the ventral (A1) and lateral (A2) sides; red arrows indicate locations of filiform hairs in the areas shaded in black: the ventral probasisternum (A1), the lateral proepisternum (A2, ventral), the dorsal pronotum (A2, dorsal), and field 1 of the wind sensitive head hairs. (B) Silver-intensified cobalt fill of the peripheral sensory nerve revealing cell body and initial axon segment of a mechanoreceptive sensory neuron and its dendrite attached to the base of a filiform probasisternal hair in a whole-mount preparation (Watson and Pflüger, 1984). (C) A scanning electron micrograph of an adult locust probasisternum showing the array of filiform hair receptors in ventral view. (D) A schematic drawing of the filiform hair-to-interneuron system in the locust (Pflüger et al., 1994). Abbreviations: A1, A4, first and fourth abdominal neuromeres; ant, anterior; ISI, intersegmental interneuron; M, muscle; MESO, META, meso- and meta-thoracic ganglia; Mn, Motor neuron; probas, probasisternal; proepi, proepisternal; pronot, pronotal; TAG, terminal abdominal ganglion.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750942&req=5

Figure 1: The locust filiform hair-to-interneuron system. (A) Schematic drawings of a locust viewed from the ventral (A1) and lateral (A2) sides; red arrows indicate locations of filiform hairs in the areas shaded in black: the ventral probasisternum (A1), the lateral proepisternum (A2, ventral), the dorsal pronotum (A2, dorsal), and field 1 of the wind sensitive head hairs. (B) Silver-intensified cobalt fill of the peripheral sensory nerve revealing cell body and initial axon segment of a mechanoreceptive sensory neuron and its dendrite attached to the base of a filiform probasisternal hair in a whole-mount preparation (Watson and Pflüger, 1984). (C) A scanning electron micrograph of an adult locust probasisternum showing the array of filiform hair receptors in ventral view. (D) A schematic drawing of the filiform hair-to-interneuron system in the locust (Pflüger et al., 1994). Abbreviations: A1, A4, first and fourth abdominal neuromeres; ant, anterior; ISI, intersegmental interneuron; M, muscle; MESO, META, meso- and meta-thoracic ganglia; Mn, Motor neuron; probas, probasisternal; proepi, proepisternal; pronot, pronotal; TAG, terminal abdominal ganglion.

Mentions: Less well known than cercal hairs are similar wind sensitive filiform sensilla on other body parts. In locusts, these occur on the frontal head and on the thorax, namely, on the ventral probasisternum, the lateral proepisternum, and the dorsal pronotum. In the first nymphal instar, there are 8 hairs on each half of the probasisternum, 2 on each proepisternum, and 3 or 4 on each half of the pronotum (Figure 1A, red arrows point to the hair receptors). During each moult new hair receptors are added, resulting in a total number of about 300 probasisternal cuticular hairs in the adult (Pflüger et al., 1994). Figure 1C shows a scanning electron micrograph of the adult probasisternum with its arrangement of filiform hairs. A single mechanosensory cell with its dendrite attached to the base of the hair shaft is revealed by a silver intensified cobalt chloride fill (Watson and Pflüger, 1984) in Figure 1B.


Developmental and activity-dependent plasticity of filiform hair receptors in the locust.

Pflüger HJ, Wolf H - Front Physiol (2013)

The locust filiform hair-to-interneuron system. (A) Schematic drawings of a locust viewed from the ventral (A1) and lateral (A2) sides; red arrows indicate locations of filiform hairs in the areas shaded in black: the ventral probasisternum (A1), the lateral proepisternum (A2, ventral), the dorsal pronotum (A2, dorsal), and field 1 of the wind sensitive head hairs. (B) Silver-intensified cobalt fill of the peripheral sensory nerve revealing cell body and initial axon segment of a mechanoreceptive sensory neuron and its dendrite attached to the base of a filiform probasisternal hair in a whole-mount preparation (Watson and Pflüger, 1984). (C) A scanning electron micrograph of an adult locust probasisternum showing the array of filiform hair receptors in ventral view. (D) A schematic drawing of the filiform hair-to-interneuron system in the locust (Pflüger et al., 1994). Abbreviations: A1, A4, first and fourth abdominal neuromeres; ant, anterior; ISI, intersegmental interneuron; M, muscle; MESO, META, meso- and meta-thoracic ganglia; Mn, Motor neuron; probas, probasisternal; proepi, proepisternal; pronot, pronotal; TAG, terminal abdominal ganglion.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750942&req=5

Figure 1: The locust filiform hair-to-interneuron system. (A) Schematic drawings of a locust viewed from the ventral (A1) and lateral (A2) sides; red arrows indicate locations of filiform hairs in the areas shaded in black: the ventral probasisternum (A1), the lateral proepisternum (A2, ventral), the dorsal pronotum (A2, dorsal), and field 1 of the wind sensitive head hairs. (B) Silver-intensified cobalt fill of the peripheral sensory nerve revealing cell body and initial axon segment of a mechanoreceptive sensory neuron and its dendrite attached to the base of a filiform probasisternal hair in a whole-mount preparation (Watson and Pflüger, 1984). (C) A scanning electron micrograph of an adult locust probasisternum showing the array of filiform hair receptors in ventral view. (D) A schematic drawing of the filiform hair-to-interneuron system in the locust (Pflüger et al., 1994). Abbreviations: A1, A4, first and fourth abdominal neuromeres; ant, anterior; ISI, intersegmental interneuron; M, muscle; MESO, META, meso- and meta-thoracic ganglia; Mn, Motor neuron; probas, probasisternal; proepi, proepisternal; pronot, pronotal; TAG, terminal abdominal ganglion.
Mentions: Less well known than cercal hairs are similar wind sensitive filiform sensilla on other body parts. In locusts, these occur on the frontal head and on the thorax, namely, on the ventral probasisternum, the lateral proepisternum, and the dorsal pronotum. In the first nymphal instar, there are 8 hairs on each half of the probasisternum, 2 on each proepisternum, and 3 or 4 on each half of the pronotum (Figure 1A, red arrows point to the hair receptors). During each moult new hair receptors are added, resulting in a total number of about 300 probasisternal cuticular hairs in the adult (Pflüger et al., 1994). Figure 1C shows a scanning electron micrograph of the adult probasisternum with its arrangement of filiform hairs. A single mechanosensory cell with its dendrite attached to the base of the hair shaft is revealed by a silver intensified cobalt chloride fill (Watson and Pflüger, 1984) in Figure 1B.

Bottom Line: The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles.A role of the hair-to-interneuron in flight steering is thus suggested.This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin Berlin, Germany.

ABSTRACT
A group of wind sensitive filiform hair receptors on the locust thorax and head makes contact onto a pair of identified interneuron, A4I1. The hair receptors' central nervous projections exhibit pronounced structural dynamics during nymphal development, for example, by gradually eliminating their ipsilateral dendritic field while maintaining the contralateral one. These changes are dependent not only on hormones controlling development but on neuronal activity as well. The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles. During stationary flight in front of a wind tunnel, interneuron A4I1 is active in the wing beat rhythm, and in addition it responds strongly to stimulation of sensory hairs in its receptive field. A role of the hair-to-interneuron in flight steering is thus suggested. This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.

No MeSH data available.


Related in: MedlinePlus