Limits...
Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor.

Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI - BMC Biotechnol. (2013)

Bottom Line: Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems.Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures. 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized.The mixed culture produced bioflocculant with high flocculating activity and an improved yield.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems. Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures.

Results: 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized.

Conclusions: The mixed culture produced bioflocculant with high flocculating activity and an improved yield. The efficiency observed with jar test may imply industrial applicability.

Show MeSH
Effect of cation on flocculating activity of purified bioflocculant produced by the consortium.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750929&req=5

Figure 6: Effect of cation on flocculating activity of purified bioflocculant produced by the consortium.

Mentions: The assessment of various cations (monovalent, divalent and trivalent) for optimal mediation of flocculation activity of the purified bioflocculant showed the divalent cations of CaCl2, MgCl2 and MnCl2 to best support flocculation activity. The ions of CaCl2 were best as flocculating activity of 90% was achieved (FigureĀ 6). Other ion valences have been reported to aid flocculation activity of bioflocculants produced from different microbial species. The bioflocculant produced by the consortium of Oerskovia, Acinetobacter, Agrobacterium and Enterobacter species was optimally supported by Ca2+ in flocculation activity [3]. On the other hand, the trivalent cations of Al3+ and Fe3+ were reported to be more effective in stimulation flocculating activity of a bioflocculant produced by a consortium of Rhizobium radiobacter F2 and Bacillus sphaeicus F6 [19]. The support of various ion valences leading to optimal flocculation activity shown by different bioflocculants may be attributed to their surface properties, particularly the distribution of charges on the surface of the biflocculants.


Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor.

Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI - BMC Biotechnol. (2013)

Effect of cation on flocculating activity of purified bioflocculant produced by the consortium.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750929&req=5

Figure 6: Effect of cation on flocculating activity of purified bioflocculant produced by the consortium.
Mentions: The assessment of various cations (monovalent, divalent and trivalent) for optimal mediation of flocculation activity of the purified bioflocculant showed the divalent cations of CaCl2, MgCl2 and MnCl2 to best support flocculation activity. The ions of CaCl2 were best as flocculating activity of 90% was achieved (FigureĀ 6). Other ion valences have been reported to aid flocculation activity of bioflocculants produced from different microbial species. The bioflocculant produced by the consortium of Oerskovia, Acinetobacter, Agrobacterium and Enterobacter species was optimally supported by Ca2+ in flocculation activity [3]. On the other hand, the trivalent cations of Al3+ and Fe3+ were reported to be more effective in stimulation flocculating activity of a bioflocculant produced by a consortium of Rhizobium radiobacter F2 and Bacillus sphaeicus F6 [19]. The support of various ion valences leading to optimal flocculation activity shown by different bioflocculants may be attributed to their surface properties, particularly the distribution of charges on the surface of the biflocculants.

Bottom Line: Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems.Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures. 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized.The mixed culture produced bioflocculant with high flocculating activity and an improved yield.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Bioflocculants effect the aggregation of suspended solutes in solutions thus, a viable alternative to inorganic poly-ionic and synthetic organic flocculants which are associated with deleterious health problems. Consequently, a consortium of two bacteria species were evaluated for optimized bioflocculant yield following the inadequacies of axenic cultures.

Results: 16S rDNA nucleotide sequencing and BLAST analysis of nucleotide sequences were used to identify the bacterial species, carbon and nitrogen sources optimally supporting bioflocculant production were assessed and the purified bioflocculant characterized.

Conclusions: The mixed culture produced bioflocculant with high flocculating activity and an improved yield. The efficiency observed with jar test may imply industrial applicability.

Show MeSH