Limits...
Correlated diffusion imaging.

Wong A, Glaister J, Cameron A, Haider M - BMC Med Imaging (2013)

Bottom Line: Fortunately, the prognosis is excellent if detected at an early stage.Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland.Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Systems Design Engineering, U. of Waterloo, Waterloo, Canada. a28wong@uwaterloo.ca

ABSTRACT

Background: Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization.

Methods: In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities.

Results: Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland.

Conclusions: A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer.

Show MeSH

Related in: MedlinePlus

Example case 2. Tumor stands out well on CDI and not at all on T2-weighted imaging in patient with prostate cancer. a), T2-weighted imaging shows no change in signal towards left side of transition zone. b), ADC map shows increased contrast around left side of transition zone. c), CDI shows very high signal intensity corresponding to left side of transition zone.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750835&req=5

Figure 5: Example case 2. Tumor stands out well on CDI and not at all on T2-weighted imaging in patient with prostate cancer. a), T2-weighted imaging shows no change in signal towards left side of transition zone. b), ADC map shows increased contrast around left side of transition zone. c), CDI shows very high signal intensity corresponding to left side of transition zone.

Mentions: Figures4,5 and6 show example slices from T2-weighted imaging, ADC map, and CDI of five patient cases out of the twenty patient cases used in the ROC analysis, and a number of observations can be made. Note that example slices show cancerous regions within the prostate gland, not benign prostatic hyperplasia (BPH) nodules. There is weak visual delineation between prostate cancer and healthy tissue in the prostate gland in the T2-weighted imaging, thus making it difficult even for highly-qualified subspecialty radiologists to interpret (particularly in Figures4 and5 where there is no decrease in signal in the cancerous region). The ADC map provides improved visual delineation compared to the T2-weighted imaging; however, it can be observed that there are some cases (e.g., Figure6) where the boundary delineation between tumor and healthy tissue is still difficult to assess. The CDI provides clearer indication of the locations and boundaries of the prostate cancer compared to the ADC maps for all patient cases. Hence, these preliminary results are motivating for the potential of CDI as a diagnostic tool for prostate cancer detection and localization.


Correlated diffusion imaging.

Wong A, Glaister J, Cameron A, Haider M - BMC Med Imaging (2013)

Example case 2. Tumor stands out well on CDI and not at all on T2-weighted imaging in patient with prostate cancer. a), T2-weighted imaging shows no change in signal towards left side of transition zone. b), ADC map shows increased contrast around left side of transition zone. c), CDI shows very high signal intensity corresponding to left side of transition zone.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750835&req=5

Figure 5: Example case 2. Tumor stands out well on CDI and not at all on T2-weighted imaging in patient with prostate cancer. a), T2-weighted imaging shows no change in signal towards left side of transition zone. b), ADC map shows increased contrast around left side of transition zone. c), CDI shows very high signal intensity corresponding to left side of transition zone.
Mentions: Figures4,5 and6 show example slices from T2-weighted imaging, ADC map, and CDI of five patient cases out of the twenty patient cases used in the ROC analysis, and a number of observations can be made. Note that example slices show cancerous regions within the prostate gland, not benign prostatic hyperplasia (BPH) nodules. There is weak visual delineation between prostate cancer and healthy tissue in the prostate gland in the T2-weighted imaging, thus making it difficult even for highly-qualified subspecialty radiologists to interpret (particularly in Figures4 and5 where there is no decrease in signal in the cancerous region). The ADC map provides improved visual delineation compared to the T2-weighted imaging; however, it can be observed that there are some cases (e.g., Figure6) where the boundary delineation between tumor and healthy tissue is still difficult to assess. The CDI provides clearer indication of the locations and boundaries of the prostate cancer compared to the ADC maps for all patient cases. Hence, these preliminary results are motivating for the potential of CDI as a diagnostic tool for prostate cancer detection and localization.

Bottom Line: Fortunately, the prognosis is excellent if detected at an early stage.Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland.Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Systems Design Engineering, U. of Waterloo, Waterloo, Canada. a28wong@uwaterloo.ca

ABSTRACT

Background: Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization.

Methods: In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities.

Results: Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland.

Conclusions: A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer.

Show MeSH
Related in: MedlinePlus