Limits...
Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246.

Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Meng Q, Fan H, Hu S - BMC Genomics (2013)

Bottom Line: Analysis of the genome identified potential Sz35246 virulence genes.Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246.Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.

ABSTRACT

Background: Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus.

Results: Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246.

Conclusion: Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines.

Show MeSH

Related in: MedlinePlus

Phylogeny of Fic/DOC domain protein sequences. Twelve protein sequences of bacteria were aligned using clustalW and the genetic relationship trees were constructed with MEGA4.0 software as well as Figure 6.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750634&req=5

Figure 7: Phylogeny of Fic/DOC domain protein sequences. Twelve protein sequences of bacteria were aligned using clustalW and the genetic relationship trees were constructed with MEGA4.0 software as well as Figure 6.

Mentions: SeseCisland_2 contains an important open reading frame (ORF), SeseC_01334, which encodes a protein with a filamentation induced by cAMP (Fic) domain (Additional file5: Table S5 and Figure 5B). The Fic domain is classified together with a second family of sequences, doc (death on curing), in the Pfam protein families database[24]. The Fic/Doc family protein sequences are aligned against this protein present inside other bacteria. Interestingly, phylogenetic analysis revealed that the Fic/Doc protein is homologous to that of Fusobacterium nucleatum subsp fusiforme (Figure 7). Fic/Doc family proteins are known as members of a TA system, the functional sites are common to both families[25]. The Fic protein has been reported to be involved in cell division and synthesis of folate, indicating that the Fic protein and cAMP are involved in a regulatory mechanism of cell division via folate metabolism[26,27]. Fic family virulence proteins may be important in many bacterial pathogens. For example, the immunoglobulin-binding protein A (IbpA) of Histophilus somni contains a direct repeat of two Fic domains, and mutation of IbpA or just the fic domain of IbpA decreased the virulence of this bacteria. The Fic domain has been shown to covalently modify host Rho GTPases with AMP, which may explain how the Fic domain influences bacterial virulence[28]. Thus, the Fic family protein in SeseCisland_2 may be involved in the pathogenicity of Sz35246.


Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246.

Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Meng Q, Fan H, Hu S - BMC Genomics (2013)

Phylogeny of Fic/DOC domain protein sequences. Twelve protein sequences of bacteria were aligned using clustalW and the genetic relationship trees were constructed with MEGA4.0 software as well as Figure 6.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750634&req=5

Figure 7: Phylogeny of Fic/DOC domain protein sequences. Twelve protein sequences of bacteria were aligned using clustalW and the genetic relationship trees were constructed with MEGA4.0 software as well as Figure 6.
Mentions: SeseCisland_2 contains an important open reading frame (ORF), SeseC_01334, which encodes a protein with a filamentation induced by cAMP (Fic) domain (Additional file5: Table S5 and Figure 5B). The Fic domain is classified together with a second family of sequences, doc (death on curing), in the Pfam protein families database[24]. The Fic/Doc family protein sequences are aligned against this protein present inside other bacteria. Interestingly, phylogenetic analysis revealed that the Fic/Doc protein is homologous to that of Fusobacterium nucleatum subsp fusiforme (Figure 7). Fic/Doc family proteins are known as members of a TA system, the functional sites are common to both families[25]. The Fic protein has been reported to be involved in cell division and synthesis of folate, indicating that the Fic protein and cAMP are involved in a regulatory mechanism of cell division via folate metabolism[26,27]. Fic family virulence proteins may be important in many bacterial pathogens. For example, the immunoglobulin-binding protein A (IbpA) of Histophilus somni contains a direct repeat of two Fic domains, and mutation of IbpA or just the fic domain of IbpA decreased the virulence of this bacteria. The Fic domain has been shown to covalently modify host Rho GTPases with AMP, which may explain how the Fic domain influences bacterial virulence[28]. Thus, the Fic family protein in SeseCisland_2 may be involved in the pathogenicity of Sz35246.

Bottom Line: Analysis of the genome identified potential Sz35246 virulence genes.Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246.Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction.

View Article: PubMed Central - HTML - PubMed

Affiliation: College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.

ABSTRACT

Background: Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is an important pathogen causing swine streptococcosis in China. Pathogenicity islands (PAIs) of S. zooepidemicus have been transferred among bacteria through horizontal gene transfer (HGT) and play important roles in the adaptation and increased virulence of S. zooepidemicus. The present study used comparative genomics to examine the different pathogenicities of S. zooepidemicus.

Results: Genome of S. zooepidemicus ATCC35246 (Sz35246) comprises 2,167,264-bp of a single circular chromosome, with a GC content of 41.65%. Comparative genome analysis of Sz35246, S. zooepidemicus MGCS10565 (Sz10565), Streptococcus equi. ssp. equi. 4047 (Se4047) and S. zooepidemicus H70 (Sz70) identified 320 Sz35246-specific genes, clustered into three toxin-antitoxin (TA) systems PAIs and one restriction modification system (RM system) PAI. These four acquired PAIs encode proteins that may contribute to the overall pathogenic capacity and fitness of this bacterium to adapt to different hosts. Analysis of the in vivo and in vitro transcriptomes of this bacterium revealed differentially expressed PAI genes and non-PAI genes, suggesting that Sz35246 possess mechanisms for infecting animals and adapting to a wide range of host environments. Analysis of the genome identified potential Sz35246 virulence genes. Genes of the Fim III operon were presumed to be involved in breaking the host-restriction of Sz35246.

Conclusion: Genome wide comparisons of Sz35246 with three other strains and transcriptome analysis revealed novel genes related to bacterial virulence and breaking the host-restriction. Four specific PAIs, which were judged to have been transferred into Sz35246 genome through HGT, were identified for the first time. Further analysis of the TA and RM systems in the PAIs will improve our understanding of the pathogenicity of this bacterium and could lead to the development of diagnostics and vaccines.

Show MeSH
Related in: MedlinePlus