Limits...
The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats.

Nagapan G, Meng Goh Y, Shameha Abdul Razak I, Nesaretnam K, Ebrahimi M - BMC Neurosci (2013)

Bottom Line: Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly.There is also notably better cognitive performance based on the Morris water maze test among these male off-springs.Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.

Results: Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs.

Conclusion: Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.

Show MeSH
Reverse probe trial results across treatment groups. Data are shown as means ± SD (n = 10). Time spent (sec), time spent in the SW quadrant, where the platform was positioned during acquisition trial; # entries, number of entries into the SW quadrant; # line crossing, number of crossing of the platform position; Average duration SW quadrant (sec), average duration spent in the SW quadrant. Significantly different from the control group, *P < 0.001 and **P < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3750608&req=5

Figure 9: Reverse probe trial results across treatment groups. Data are shown as means ± SD (n = 10). Time spent (sec), time spent in the SW quadrant, where the platform was positioned during acquisition trial; # entries, number of entries into the SW quadrant; # line crossing, number of crossing of the platform position; Average duration SW quadrant (sec), average duration spent in the SW quadrant. Significantly different from the control group, *P < 0.001 and **P < 0.01.

Mentions: Figure 7 depicts the results of the reversal test in which the platform was placed on the opposite side of the quadrant. The reversal test evaluated memory plasticity and re-learning abilities. Results showed that the escape latencies of all groups gradually declined over 5 days. However, significant differences between treatment groups was seen only on day 3 (P = 0. 03), day 4 (P = 0. 003) and day 5 (P < 0.001). DHA-supplemented group recorded a shorter escape latency on day 3 and day 4 (P < 0.05) compared to the control group. By day 5, in addition to the DHA group, both TRF and DTRF groups (P < 0.05) also logged a shorter escape latency compared to the control group. Collectively, these results showed that the rate of acquisition improved on day 5 in the reversal trial. The results also showed that rats from all treatment groups logged similar distances to arrive at the escape platform during the reversal trial on days 1 and 2. However, the differences were only observed on day 3 (P = 0. 02), day 4 (P = 0. 04) and day 5 (P < 0.001). TRF, DHA and DTRF supplemented animals swam significantly shorter distance compared to control animals on day 3 (P < 0.05) and day 5 (P < 0.01) (Figure 8). However, no differences were found on day 4. However swimming speeds did not differ across treatment groups. The reversal probe trial (Figure 9) also indicated that all supplemented animals had quadrant preference, all supplemented groups spent more time in NE quadrant formerly containing the platform compared to control animals.


The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats.

Nagapan G, Meng Goh Y, Shameha Abdul Razak I, Nesaretnam K, Ebrahimi M - BMC Neurosci (2013)

Reverse probe trial results across treatment groups. Data are shown as means ± SD (n = 10). Time spent (sec), time spent in the SW quadrant, where the platform was positioned during acquisition trial; # entries, number of entries into the SW quadrant; # line crossing, number of crossing of the platform position; Average duration SW quadrant (sec), average duration spent in the SW quadrant. Significantly different from the control group, *P < 0.001 and **P < 0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3750608&req=5

Figure 9: Reverse probe trial results across treatment groups. Data are shown as means ± SD (n = 10). Time spent (sec), time spent in the SW quadrant, where the platform was positioned during acquisition trial; # entries, number of entries into the SW quadrant; # line crossing, number of crossing of the platform position; Average duration SW quadrant (sec), average duration spent in the SW quadrant. Significantly different from the control group, *P < 0.001 and **P < 0.01.
Mentions: Figure 7 depicts the results of the reversal test in which the platform was placed on the opposite side of the quadrant. The reversal test evaluated memory plasticity and re-learning abilities. Results showed that the escape latencies of all groups gradually declined over 5 days. However, significant differences between treatment groups was seen only on day 3 (P = 0. 03), day 4 (P = 0. 003) and day 5 (P < 0.001). DHA-supplemented group recorded a shorter escape latency on day 3 and day 4 (P < 0.05) compared to the control group. By day 5, in addition to the DHA group, both TRF and DTRF groups (P < 0.05) also logged a shorter escape latency compared to the control group. Collectively, these results showed that the rate of acquisition improved on day 5 in the reversal trial. The results also showed that rats from all treatment groups logged similar distances to arrive at the escape platform during the reversal trial on days 1 and 2. However, the differences were only observed on day 3 (P = 0. 02), day 4 (P = 0. 04) and day 5 (P < 0.001). TRF, DHA and DTRF supplemented animals swam significantly shorter distance compared to control animals on day 3 (P < 0.05) and day 5 (P < 0.01) (Figure 8). However, no differences were found on day 4. However swimming speeds did not differ across treatment groups. The reversal probe trial (Figure 9) also indicated that all supplemented animals had quadrant preference, all supplemented groups spent more time in NE quadrant formerly containing the platform compared to control animals.

Bottom Line: Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly.There is also notably better cognitive performance based on the Morris water maze test among these male off-springs.Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Background: Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.

Results: Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs.

Conclusion: Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.

Show MeSH